
PAKE-Based Web Authentication:
the Good, the Bad, and the Hurdles

John Engler
UC Berkeley

Chris Karlof
UC Berkeley

Elaine Shi
PARC

Dawn Song∗

UC Berkeley

Abstract. Password Authenticated Key Exchange (PAKE) is
a class of cryptographic protocols that allow two parties sharing
a password to authenticate each other without explicitly reveal-
ing the password in the process. PAKE protocols offer a poten-
tial improvement over current web authentication practices, e.g.,
HTML form-based password authentication, but there has been
little progress towards integrating PAKE into web browsers and
servers. In this paper, we report the results of a systematic in-
vestigation of various practical issues and challenges in deploying
PAKE for web authentication. We examine three categories of is-
sues: 1) security issues related to UI design; 2) security issues re-
lated to the browser’s same origin policy; and 3) potential hurdles
to deployment. We propose potential solutions for some problems
and identify areas for future work.

1 Introduction

The most common web authentication technique in use to-
day is password authentication via an HTML form, where
a user types her password directly into a web page from
the site to which she wishes to authenticate herself. The
problem with this approach is that it relies on the user to
determine when it is safe to enter her password. To resist
phishing and other social engineering attacks, a user must
rely on the browser’s security indicators and warning mes-
sages, e.g., the URL bar and the site’s SSL certificate, to
authenticate the website and determine when it is safe to en-
ter her password. Unfortunately, studies suggest that many
users habitually click through SSL certificate warnings due
to the pervasiveness of certificate errors [14, 48]. Other
studies show that users do not understand browser indica-
tors [11, 20, 21, 46].

To address these vulnerabilities, we revisit the idea of ap-
plying Password Authenticated Key Exchange (PAKE) [25,
38, 39, 3, 9, 4, 40, 35, 33, 23, 22, 24, 23, 22, 41] protocols
to web authentication. A PAKE protocol is a cryptographic
protocol that allows two parties who share knowledge of a
password to mutually authenticate each other and establish

∗This material is based upon work partially supported by the Na-
tional Science Foundation under Grants No. 0311808, No. 0448452, No.
0627511, and CCF-0424422, and by the Air Force Office of Scientific Re-
search under MURI Grant No. 22178970-4170. Any opinions, findings,
and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the Air Force
Office of Scientific Research, or the National Science Foundation.

a shared key, without explicitly revealing the password in
the process.

One hope of using PAKE protocols for web authentica-
tion is to help make it easier for users to authenticate web-
sites and reduce the attack surface of social engineering
attacks against their accounts. With the current approach
of HTML form-based authentication, it is unsafe for a user
to attempt to authenticate herself to a phisher mimicking a
website she trusts, since doing so will reveal her password.
With a PAKE protocol, if a user mistakenly attempts to au-
thenticate herself to a phisher, the protocol will fail, but the
user’s password will remain safe. Since the phisher does
not know the user’s password, the phisher will not be able
to successfully complete the protocol, and the browser can
alert the user of the failure.

Goals and contributions. In this paper, we perform a sys-
tematic investigation of various practical issues and chal-
lenges in deploying PAKE for web authentication. Al-
though many PAKE protocols have been proposed, there is
little momentum for integrating PAKE protocols into web
authentication. One contribution we hope to make in this
paper is to help raise awareness of the issues inhibiting the
widespread adoption of PAKE, and help stimulate future
work and discussion in this area.

We investigate three categories of issues: 1) security is-
sues related to UI design; 2) security issues related to the
browser’s same origin policy; and 3) potential hurdles to
deployment. We propose potential solutions for some prob-
lems and identify areas for future work. An important con-
tribution we make is to systematically lay out the issues sur-
rounding PAKE that go beyond the cryptography. While
many other issues may exist, we pick what we believe are
the most important ones.

2 Problem Overview

In this section, we introduce the background on PAKE, the
main concept of PAKE-based web authentication, and set
our problem scope.

1



2.1 PAKE-based Web Authentication

PAKE is a class of cryptographic protocols that allow two
parties to establish a secret key based on a shared password.
Since its proposal, PAKE has been studied extensively and
many protocols have been proposed [5, 6, 25, 38, 53, 54, 39,
4, 3, 9, 40, 35, 33, 23, 22, 24, 23, 22, 41]. Some more recent
protocols have provable security [40, 33, 24, 23, 22, 41].
Although many of these protocols are currently covered by
patents, the patent on the EKE protocol and variants [5, 4,
10] will expire in 2011.

In PAKE-based web authentication, when a user wishes
to authenticate herself to a website, she enters her pass-
word, and the browser and server run an interactive PAKE
protocol to establish a session key based on the user’s
password without explicitly revealing the password in
the process. The browser and server can prove to each
other they derived the same key. If the protocol fails,
the browser can alert the user, indicating that the server
does not know the password that the user entered. The
derived key can also be used to encrypt and authenti-
cate their future communication between the two parties.

2.2 Problem Scope

Threats. We are concerned with the security of web au-
thentication. In particular, we are concerned with an at-
tacker who relies on phishing or other social engineering
techniques to steal the user’s password. We consider that
the attacker may have network abilities, for example, the at-
tacker can act as a man-in-the-middle and relay messages
between the honest user and honest server, or the attacker
may hijack the DNS of an honest website. The attacker
may also exploit flaws in the browser’s security policies to
learn the honest user’s personal and financial information.

Out-of-scope threats. A variety of threats exist in today’s
web many of which are system vulnerabilities beyond the
scope of web authentication or this paper. For example,
we do not attempt to solve attacks such as cross-site script-
ing or cross-frame request forgery. We also do not consider
malware or kernel rootkits, as an attacker who controls the
honest user’s machine can potentially install a key-logger
to capture the user’s username and password. We point out
that an extensive body of literature exists that investigates
countermeasures to these threats.

In the remainder of this paper, we describe challenges and
issues that need to be addressed for PAKE to be deployed
in practice.

3 Security Issues Related to UI

PAKE-based web authentication is designed to reduce the
attack surface of password leakage by using the PAKE pro-
tocol instead of the current form-based approach for authen-
tication and key establishment. However, to gain such ben-
efits in a real deployment, a few important UI issues need
to be addressed beyond simply implementing the PAKE
cryptographic protocol, otherwise, an attacker could exploit
weaknesses in the UI to fool or confuse the user and steal
the user’s password. In this section, we discuss these issues.

3.1 Trusted Paths

UI Challenge 1 (Secure UI design). How can we design a
user interface that is both usable, and minimizes the chance
of human mistakes?

Failure of in-page password forms. One naive solution
is to have the user type in her password in in-page pass-
word forms as in the traditional password authentication
approaches. However, this approach is insecure, since
any design relying on in-page password input is subject to
attacks—for example, a malicious JavaScript in-page may
steal the user’s input and sends it to the attacker. It is also
difficult for the user to determine when she can trust that
her password will only be used through a PAKE protocol
and not be sent as cleartext or stolen by an attacker.

Trusted path. Thus, we need a trusted path for the user to
enter her password and ensure that the password will only
be used through the PAKE protocol. Different trusted path
designs have been suggested in the past, including the use
of an in-chrome password box, or a trusted keystroke se-
quence. The in-chrome password box approach places the
password box inside the bordering frames of the browser, as
it can be made difficult for the webpage to spoof the chrome.
In the trusted keystroke sequence [45] approach, the user
presses a special keyboard key or keystroke sequence (anal-
ogous to ctrl+alt+del) to notify the browser when the
user wishes to login. When the key sequence is pressed,
the browser disables all text entry except for in a trusted
password box, successfully preventing replicate/mimicry
attacks.

Each approach for establishing the trusted path also re-
quires intricate design decisions for security. For example,
one important design question for the in-chrome password
box approach is when to display the password box: 1) Dis-
play only when necessary. The first approach is to display
the password box only when the browser detects a login
page. A similar approach was taken by Wu, et. al. in [52]
using a sidebar login box and they found the approach was
highly vulnerable to replicate or mimicry attacks. 2) Always
display. Another option is to always display the password
box, regardless of whether the page contains a password

2



form. This method prevents the chrome-imitation attack
described above. However, we need dedicated space in the
browser’s chrome to display the password box at all times.

Even the “always display” option may have vulnerabili-
ties. For example, in a replicate attack, the attacker imitates
the in-chrome password box at the top of the page, caus-
ing two almost identical-looking password boxes to appear.
When users fail to login through the real password box, they
may be tempted to enter their passwords in the fake pass-
word box, possibly assuming that the interface is broken.
A similar attack has been studied by Wu et. al. for their
Web Wallet tool [52]. One way to defend against replicate
attacks is to have the user customize the background of the
in-chrome login bar, or display a personalized image next to
the in-chrome login bar. Previous studies [12, 52, 46] have
investigated and given suggestions for how to design such
security skins. Given the different alternatives for UI de-
sign, one open research direction is to perform user studies
to compare and evaluate their effectiveness.

It is worth noting that researchers have recently pro-
posed methods to build trusted paths resilient to OS com-
promise [44] using a trusted computing approach. We can
potentially make use of these designs for enchanced secu-
rity.

3.2 User Education and Training

Users are accustomed to entering passwords in web pages,
thus requiring them to always enter passwords through
the trusted path may present significant challenges. Such
challenges become even more severe during incremental
deployment when legacy websites still use in-page login
forms.

UI Challenge 2 (User education). What steps need to be
taken to effectively migrate users to using the new trusted
path (e.g., the in-chrome login bar)?

Suggestions for adopting websites. User training can
start to take place as good websites begin adopting the
trusted path approach. Take the in-chrome login approach
for example. In the early stages of adoption, a website may
provide both the in-chrome login option (using PAKE) and
the in-page login option (using traditional HTTPS). Web-
sites could display a message next to the in-page password
form that suggests users start using the in-chrome password
box for higher security, and forecast that the in-page pass-
word form will be eliminated in the near future. At the end
of this transition period, the login webpage removes the in-
page password form completely, and explicitly requires that
the user enter their passwords in the chrome. We emphasize
that only when the option of entering passwords in-page is
completely eliminated, can we engage the user’s attention
with certainty, and educate them to enter their password in
the chrome. This is a lesson learned from security indica-
tors: despite efforts at user education, security indicators

prove to be ineffective, partly due to the fact that they fail to
engage the users’ attention [11, 20, 21, 46].

It is worth noting that adopting websites can provide pos-
itive reinforcement in the user training process. If a major
website such as Google or Yahoo adopts this approach, it
will immediately raise global awareness of this matter. As
users go to Gmail to check their emails daily, their mem-
ory will be reinforced time and again. Such increased user
awareness will pave the way for other websites to adopt this
approach. Meanwhile, as more and more websites begin to
adopt, they in turn contribute to the user training process,
creating a positive feedback loop which will be beneficial
towards wide-scale adoption.

Handling legacy websites. On the other hand, legacy
sites that maintain the in-page login approach may effec-
tively “untrain” the user. A crucial question to consider is
whether we should allow users to use the in-chrome login
bar (or any other trusted password box) to log into non-
PAKE websites. If not, the user may think that the in-
chrome login bar is unreliable, and may try to avoid using
it whenever possible. It might be easier for the users if the
in-chrome bar also supports non-PAKE logins. However,
users now have to verify certificates even when they use the
in-chrome login bar, and contrary to the belief that we are
trying to instill in users, the in-chrome login bar is no longer
safe at all times. Attackers can also exploit this, and trick
users to enter their passwords into the in-chrome bar, while
the password is actually sent in cleartext to the attacker. An-
other drawback of this approach is that valid websites may
now have less incentive to actually deploy PAKE. In partic-
ular, websites might mimic what was done when SSL was
deployed: they continue to use the unsafe approach and put
in their websites messages and indicators attempting to con-
vince the user that their connection is safe [26].

3.3 Designing Error Messages and Warnings

Users may have the temptation to fall back to the traditional
in-page login approach when they fail to log in through the
trusted user interface.

UI Challenge 3 (Error messages and warnings). How can
we effectively communicate with the user when failures oc-
cur, so that they do not fall back to using insecure methods?

Failure to login through the in-chrome login bar can re-
sult from the following reasons: 1) a network failure or the
server fails to respond; 2) the user entered the wrong user-
name and password; 3) the website is a fraudulent site; 4) if
the in-chrome login bar does not support non-PAKE logins,
in-chrome logins will fail at legacy websites.

Ideally, the browser should intelligently distinguish be-
tween these causes and give the user helpful suggestions ac-
cordingly. While it is easy to distinguish a network failure
(e.g., the underlying TCP connection fails) from a login fail-
ure (e.g., the PAKE protocol fails), it may more difficult for

3



the browser to distinguish wrong username/password from
a fraudulent website, especially when the attacker hijacks
the DNS of a good website such as bank.com.

One way to infer if the user has entered the wrong
username/password is to remember a hash of the user-
name/password for each website every time a user success-
fully logs in. However, to avoid offline dictionary attacks in
case of device capture, only a few bits of the hash should be
stored.

Another method is to build more intelligence into the
browser, so it can infer the trustworthiness of a website.
This can be achieved through a combination of approaches.
For example, we can build a reputation system for websites
through community efforts, such as the approach taken by
Perspectives [50]. SSL certificates can also serve as an in-
dicator of the trustworthiness of a website. Utilizing these
sources of information, the browser may be able to intel-
ligently dignose the cause of a failed PAKE handshake:
whether it is due to a wrong username/password combina-
tion or due to a fraudulent website. The browser should give
different suggestions to the user in each case.

It is worth mentioning that the research community have
conducted several interesting studies to evaluate the effec-
tiveness of warnings and error messages [26, 15]. We can
draw many lessons from these studies when designing the
error messages and warnings for a PAKE-enabled browser.
For example, how to prevent users’ habituation to click
through warnings, how to design warnings that engage the
users attention, how to make suggestions, and how to make
the users understand the security risks that they are taking.

3.4 Password Setup/Reset

Password setup and reset represent another weak link in the
system, and must be considered.

UI Challenge 4 (Password setup and reset). How can we
secure the account registration and password reset pro-
cesses?

We now describe why password setup/reset is particu-
larly vulnerable, and suggest potential ways to secure the
process.
Password reuse. PAKE does not protect users who reuse
their banking password at an online game forum poten-
tially hosted or compromised by an attacker. The password
reuse problem can be alleviated through tools such as Pwd-
Hash [45, 27] which hashes the password along with the
website’s domain name and certificate. By hashing the pass-
word multiple times, we can potentially mitigate offline dic-
tionary attacks [27]. Another promising approach recently
proposed by Boyen [8] suggests how to retrieve different
credentials from a remote server using a reusable password.
Social engineering. The attacker can set up a fake bank.
com website and ask the user to setup/reset her password.
The user is in danger if she sets up the same password at

the attacker’s website and at the real bank’s website. Such
social engineering attacks are particularly hard to prevent,
especially with security-unconscious users. For example,
the attacker can call up the user claiming to be the bank, and
the user may be gullible enough to give away his password.
It seems that the only way to address such attacks is to raise
user awareness through long-term user eduction.
Suggestions. For a security-conscious user, however, we
can potentially provide ways to help her authenticate the
website.

1) The user and the bank can set up a password out of
band, e.g., when the user goes to the bank to open an ac-
count.

2) If the user and the bank share some weak secret such
as an account number or the social security number, the two
parties can potentially use PAKE to authenticate each other
to bootstrap the password setup/reset process.

3) In particular, for password reset, the user and the bank
share knowledge of the security questions and answers. We
can potentially use these as the shared secret to a PAKE
handshake. To allow tolerance to error, we can imagine a
fuzzy PAKE protocol, where two parties holding closely-
related secrets can establish a secret key. This is a relatively
new area [13], and it remains an open research problem to
design an efficient and practical protocol for this purpose.

4) The browser or the system can help the user judge
the trustworthiness of the website, for example, based on
the site’s certificate or its reputation collected through com-
munity efforts. This is in fact similar to the problem we
encounter in today’s web authentication where users need
to consciously authenticate the website. Therefore, we
can borrow techniques and learn lessons from existing ap-
proaches. It is an open research challenge how the browser
can effectively give users suggestions.

5) To prevent man-in-the-middle attacks in the pass-
word setup/reset process, we can potentially use out-of-
band channels such as SMS messages, which are hard to
intercept and cost money for the adversary to send and re-
ceive.

4 Security Issues Related to SOP

As attackers may try to launch attacks by exploiting the
browser’s Same-Origin Policy (SOP), additional caution is
needed when integrating PAKE into the browser.

SOP is the browser’s access control policy, and pre-
vents pages from different sites from accessing each other’s
web objects, including HTTP cookies, HTML documents,
JavaScript, etc. The SOP works by assigning all received
content an “origin identifier” which generally consists of the
application layer protocol (e.g., HTTP, HTTPS, etc), the do-
main name: (e.g., www.google.com), and the TCP port.
Browsers consider two resources to be from the same origin
if their origin identifiers are the same.

4



SOP Challenge 1 (Working with SOP). How can we se-
curely integrate PAKE into the browser to work with the
browser’s SOP?

Isolating PAKE and non-PAKE sessions. A good web-
site may offer both high security PAKE pages and low se-
curity non-PAKE pages (including traditional HTTPS and
unencrypted pages). The low security pages may contain a
vulnerability, and an attacker essentially becomes a man-in-
the-middle if she successfully injects malicious scripts into
these pages. Therefore, we must prevent non-PAKE pages
from accessing PAKE-enabled pages.

One promising approach is to introduce a new proto-
col name for PAKE-enabled sessions, such as HTTPVS
(Hyper-Text Transport Protocol - “Very Secure”). In this
way, the browser will assign PAKE and non-PAKE sessions
different origin identifiers, and isolate them.

Defense against the network attacker. If a user estab-
lishes two simultaneous sessions under the same origin and
one of them is controlled by an attacker, then the malicious
session will be able to access the real one. Recent research
has shown that such attacks are possible if the attacker has
control of the network [32, 29]. For example, in a DNS poi-
soning attack, the attacker hijacks the DNS of bank.com,
and opens a connection with the user. Then, the user con-
nects again to bank.com (in a separate window or in an
iframe), and the attacker acts as a man-in-the-middle and
forwards the user’s connection to the real server. Now the
attacker’s session is able to read and write the session to the
real server. Recent studies [32, 29] also demonstrate other
possible ways to launch such an attack including the use of
DNS rebinding.

Such attacks are possible due to inherent flaws in the
browser’s SOP, and are relevant regardless of whether
PAKE is employed. One promising defense is to augment
the same-origin identity with the hash of the password used
to create a PAKE session [32, 29].

5 Deployment Challenges

We now consider deployment issues, including architectural
choices and website customization of the login UI.

5.1 Architectural Choices

Deployment Challenge 1 (Web Application Architecture).
What is the appropriate layer in the networking stack to in-
tegrate PAKE protocols?

To examine this issue we analyze and compare two
existing proposals for PAKE-based web authentication:
TLS-SRP [49], which operates at the transport layer, and
HTTPS-PAKE [42], which operates at the application layer.

TLS-SRP. Since PAKE may be needed by multiple ap-
plications, it would be desirable to implement it below the
application layer from a system design perspective. This
removes the trouble of having to develop and implement a
unique PAKE standard for each application, thereby encour-
aging the use of PAKE by other applications. This is the ap-
proach taken by TLS-SRP, which integrates the Secure Re-
mote Password Protocol (SRP) [53, 54] into the Transport
Layer Security (TLS) suite. The TLS suite and its prede-
cessor, the Secure Sockets Layer (SSL), are transport layer
cryptographic protocols for establishing end-to-end secure
channels for Internet traffic, most notably for HTTP traffic.

To create a TLS connection, a user’s computer and a
server must first negotiate a cipher suite. A cipher suite typ-
ically specificies the key negotiation method (e.g., Diffie-
Hellman with RSA) and how the parties will use the negoti-
ated key to create a secure channel (e.g., AES in CBC mode
and HMAC with SHA-1). TLS-SRP extends TLS by sup-
porting additional cipher suites that use SRP for the key ne-
gotiation phase. To employ TLS-SRP, the user’s computer
and the server first use SRP to interactively derive a sym-
metric key based on the user’s password, and then create a
secure channel using the latter part of of the cipher suite and
the derived key.

Arguably, one reason why TLS has been so successful is
that it is largely transparent to applications that use it. For
example, after some initial configuration, many websites
can typically just “turn on” TLS in their server software to
enjoy many of its benefits. One advantage of this design is
that websites can develop HTTPS applications that are in-
dependent from the choice of server hardware and software.

To employ TLS-SRP, this benefit of transparency may be
lost. Since web applications typically manage users’ iden-
tities and authentication credentials, TLS-SRP will require
an inter-layer communication menchanism between appli-
cation software and the TLS software to create and man-
age TLS-SRP sessions. For example, if a user’s browser
attempts to initiate a TLS-SRP session, the TLS software
must communicate with the web application to obtain the
the user’s authentication credentials. It would also be de-
sirable for the appplication to know if logins succeed and
when TLS-SRP connections close.

This problem is exacerbated in site architectures that em-
ploy load balancing HTTPS front-ends. A common site ar-
chitecture is to deploy dedicated load balancing machines
that terminate TLS connections. These machines service
TLS connections and route the underlying HTTP requests to
the appropriate web servers, which may run on separate ma-
chines. Deploying TLS-SRP in this type of architecture will
require new network protocols to manage user sessions be-
tween HTTPS front-ends and back-end application servers.

Another problem with TLS-SRP is that it does not cleanly
support authentication to multiple realms within a single do-
main. For example, Google Apps provides “software-as-a-
service” for email, document management, and information

5



sharing. The appearance is that each Google Apps customer
gets a separate site hosted at google.com with unique
user names and authentication credentials for each of their
users. Supporting TLS-SRP authentication in this context is
problematic. Current browser implementations of TLS will
re-use the same TLS connection for all HTTPS requests to
a particular domain. However, authenticating to different
realms hosted at the same domain requires browsers to ini-
tiate seperate TLS-SRP connections for each realm, further
complicating matters.

PAKE over HTTPS. To address the drawbacks of TLS-
SRP, Oiwa et. al. proposed to implement PAKE at the appli-
cation layer, over HTTPS [42]. We refer to their approach
as HTTPS-PAKE.

HTTPS-PAKE is inspired by HTTP Digest Authentica-
tion, which authenticates users using the HTTP protocol.
HTTPS-PAKE works by tunneling the PAKE protocol mes-
sages over HTTP, in additional HTTP headers. This ap-
proach gives the application layer control over authentica-
tion policies without any interaction with TLS. However,
HTTPS-PAKE still relies on TLS to provide a secure chan-
nel between browsers and servers. With HTTPS-PAKE au-
thentication, a user’s browser first establishes a TLS con-
nection with the server. Then, over the encrypted TLS ses-
sion, the browser and the server perform a PAKE handshake
and derive a PAKE key derived from the user’s password.

In contrast to TLS-SRP, HTTPS-PAKE does not use the
PAKE key to authenticate messages between the user’s
browser and server directly, but rather includes an “authen-
tication value” derived from it in the HTTP request and re-
sponse headers. To address phishing attacks that forward
HTTPS-PAKE messages between a user’s browser and a
server in an attempt to impersonate the user, HTTPS-PAKE
binds a user’s password to authentication realms in way that
resists these types of phishing attacks.

One drawback of HTTPS-PAKE is that by integrating
at the application layer, it is vulnerable to stronger threats,
such as pharmers and network attackers, and relies on users
to detect these attacks. For example, suppose a user at-
tempts to authenticate herself to bank.com with HTTPS-
PAKE and a pharmer has hijacked DNS for bank.com.
When the user initially connects to bank.com, she will
reach the adversary. Assuming the adversary is unable to
obtain a valid certificate for bank.com, the user will see
a certificate warning, but studies suggest many users ignore
these warnings. If a user ignores the certificate warning and
attempts to authenticate herself with HTTPS-PAKE, the at-
tacker can man-in-the-middle the PAKE protocol, which oc-
curs over HTTP. The authentication will appear to succeed
from the perspective of the user’s browser and the server,
but the session has been compromised by the attacker.

In contrast, TLS-SRP does not rely on users to detect
pharmers and network attackers. If an adversary does not
know the user’s password, he cannot successfully complete

the protocol, and the connection will fail.

5.2 Website Customization of Login UI

Since a website’s login page can contribute to its branding,
some sites may be hesistant to adopt a PAKE-based web
authentication scheme if they lose some control of users’
login experience.

Deployment Challenge 2 (Website customization of the lo-
gin UI). How can we provide a secure user interface while
still allowing websites to customize and brand the user ex-
perience?

Customizing the anchor page. With a PAKE-enabled
browser using an in-chrome login box, websites can still
offer a customizable anchor page which informs the users
that the page requires logging in, and suggests that the user
enter their password in the in-chrome bar. The anchor page
is also likely to provide a link for users who have forgotten
their passsword.

It might also be possible to safely allow websites the op-
tion of limited branding within an in-chrome login mech-
anism. For example, each website can ask the chrome to
display a customized image next to the in-chrome password
box.

Customizing login failures. Websites may wish to be
able to customize the login failure page as well. However,
this raises a security issue since a malicious website can
exploit this and ask the user to enter her password in the
webpage instead.

One potential solution is for the browser to display a
generic failure page or warning page before the user can
proceed to the website’s customized failure page. A dan-
ger of this approach is that users may tend to click through
such warnings. Another approach is to allow websites to
customize the failure pages in a restricted way. For exam-
ple, the browser offers a template of a login failure page and
the website fills in restricted forms of contents. Section 3.3
has more discussion on how to design error messages and
warnings.

6 Implementation

To further study the problems surrounding PAKE deploy-
ment, we developed an open-source PAKE prototype for
Mozilla Firefox [16]. Our implementation consists of
the following components: 1) a component to handle the
HTTPVS protocol; 2) a plugin that creates an in-chrome lo-
gin bar for retrieving the user’s credentials; 3) a plugin that
implements the PAKE Session Manager (PSM); and 4) a
patch that implements TLS-PAKE. For the TLS-PAKE im-
plementation we chose to use Steffen Schulz’s implemen-
tation of TLS-SRP in Mozilla’s Network Security Services

6



(NSS) layer [47, 54]. The Secure Remote Password Pro-
tocol (SRP) is one specific instantiation of PAKE that does
not have provable security. We leave it as future work to
implement a version of PAKE that has proven security. In
particular, our implementation makes the following contri-
butions. 1) We implement the UI component missing from
Schulz’s implementation of TLS-SRP, and the PSM to con-
nect the UI and TLS-PAKE. 2) We propose and implement
the HTTPVS protocol handler, to defend against attacks on
SOP.

7 Related Work

Authenticating the website. An extensive body of lit-
erature exists that helps users to decide when to trust a
website. These approaches can be largely divided into
three classes: 1) Security indicators and improved secu-
rity indicators [17, 36, 37, 56, 28]; 2) Trusted paths or se-
cure bookmarks with known sites [12, 52, 55, 43, 31]; 3)
Automated detection and blacklisting of known phishing
sites [1, 2]. Studies have shown that security indicators
are ineffective [11, 20, 21]. Even with improved security
indicators and warnings, users still find it difficult to inter-
pret them [30, 46, 51, 52]. Identification and blacklisting
of known phishing sites still suffer from inaccuracy prob-
lems [57], and browser vendors are unlikely to deploy this
approach due to liability issues. PAKE-based web authen-
tication is designed to precisely solve the difficult problem
of how a user can authenticate a website.

Password management. Researchers have also proposed
browser extensions to help users manage and strengthen
their passwords [34, 45, 27, 55]. Password hashing can re-
lieve users the burden of remembering too many passwords.
These password management schemes are complimentary
to PAKE-based web authentication.

HTTP Digest Authentication. HTTP Digest Authentica-
tion is an RFC standard that allows a client and a web server
to negotiate a key without sending the password in the clear.
Digest authentication [19, 18] was meant to supercede the
basic HTTP authentication [7] in which passwords are sent
in the clear. Digest authentication failed to take off due to
many reasons. First, the cryptography is unsound, and it
is susceptible to man-in-the-middle attacks and dictionary
attacks. Second, its original implementations in IE were
incompatible with the RFC standard. Third, HTTP digest
authentication uses a trusted password box provided by the
browser, and websites could no longer customize their login
user interface. We speculate that this was another reason
why HTTP digest authentication was not well-received.

8 Conclusion

We revisit the problem of PAKE-based web authentica-
tion, and investigate various issues that might inhibit its
widespread adoption. We believe that it is important to ask
and think about these questions, and we hope to stimulate
discussions on this topic. We conclude by summarizing the
good, the bad and the challenges of deploying PAKE-based
web authentication.
The good. PAKE-based web authentication does have clear
benefits over today’s approach. First, when combined with
the right UI, PAKE can reduce the attack surface of web-
based authentication. Second, although careless users may
still fall prey to social engineering attacks, at the very least,
we can protect security-conscious users, and relieve them
of the burden of deciding whether to trust a website. More-
over, with proper user education, we can hope to raise the
global awareness of users over time.
The bad. On the other hand, PAKE-based web authentica-
tion will not address all the security problems with web au-
thentication. Although proper user education can alleviate
this problem, careless users may still enter their passwords
in unsafe webpages. In particular, one weak link is social
engineering attacks involving password setup and reset.
The challenges. We acknowledge that certain hurdles have
to be overcome to deploy PAKE-based web authentication.
First, we need to draw lessons from the failures of cur-
rent web authentication and make careful UI design choices
from the very beginning. Second, not only do browser ven-
dors and websites need to collaborate in this effort, web-
sites may also need to upgrade their TLS stack (including
TLS accelerators) and application logic simultaneously to
provide PAKE support.

Acknowledgement

We would like to thank Philip MacKenzie, Adam Barth,
Serge Egelman, Markus Jakobsson and Chris Li for help-
ful discussions and valuable suggestions in preparing the
paper.

References

[1] Earthlink toolbar featuring scamblocker for windows users.
http://www.earthlink.net/software/domore.
faces?tab=toolbar.

[2] Netcraft toolbar. http://toolbar.netcraft.com/.
[3] M. Bellare and P. Rogaway. The AuthA protocol for password-based

authenticated key exchange. Contributions to IEEE P, 1363, 2000.
[4] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenti-

cated key exchange secure against dictionary attacks. In Eurocrypt,
2000.

[5] SM Bellovin and M. Merritt. Encrypted key exchange: password-
based protocols secure againstdictionary attacks. In 1992 IEEE Com-
puter Society Symposium on Research in Security and Privacy, 1992.
Proceedings., pages 72–84, 1992.

[6] S.M. Bellovin and M. Merritt. Augmented encrypted key exchange:
a password-based protocol secure against dictionary attacks and

7



password file compromise. In Proceedings of the 1st ACM con-
ference on Computer and communications security, pages 244–250.
ACM New York, NY, USA, 1993.

[7] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer pro-
tocol – http/1.0, 1996.

[8] Xavier Boyen. Hidden credential retrieval from a reusable password.
In ACM Symposium on Information, Computer & Communication
Security—ASIACCS 2009, 2009.

[9] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure
password-authenticated key exchange using diffie-hellman. In Euro-
crypt, 2000.

[10] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Se-
curity proofs for an efficient password-based key exchange. In CCS
’03: Proceedings of the 10th ACM conference on Computer and com-
munications security, 2003.

[11] R. Dhamija, JD Tygar, and M. Hearst. Why phishing works. In Pro-
ceedings of the SIGCHI conference on Human Factors in computing
systems, pages 581–590. ACM New York, NY, USA, 2006.

[12] Rachna Dhamija and J. D. Tygar. The battle against phishing: Dy-
namic security skins. In SOUPS ’05: Proceedings of the 2005 sym-
posium on Usable privacy and security, 2005.

[13] Yevgeniy Dodis, Jonathan Katz, Leonid Reyzin, and Adam Smith.
Robust fuzzy extractors and authenticated key agreement from close
secrets. In CRYPTO, pages 232–250, 2006.

[14] Inc. E-Soft. Ssl server survey. http://www.securityspace.
com/s_survey/sdata/200701/certca.html, 2007.

[15] Serge Egelman, Lorrie Faith Cranor, and Jason I. Hong. You’ve
been warned: an empirical study of the effectiveness of web browser
phishing warnings. In CHI, 2008.

[16] John Engler. Httpvs and the pake session manager for mozilla’s
firefox browser, March 2009. http://www.freewebs.com/
jengler/pake.htm.

[17] R. Franco. Better Website identification and extended validation cer-
tificates in IE7 and other browsers. Microsoft Developer Network’s
IEBlog. http://blogs. msdn. com/ie/archive/2005/11/21/495507.
aspx, 2004.

[18] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach,
A. Luotonen, and L. Stewart. Http authentication: Basic and digest
access authentication, 1999.

[19] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen,
E. Sink, and L. Stewart. An extension to http : Digest access au-
thentication, 1997.

[20] Batya Friedman, David Hurley, Daniel C. Howe, Edward Felten, and
Helen Nissenbaum. Users’ conceptions of web security: a compara-
tive study. In CHI ’02: CHI ’02 extended abstracts on Human factors
in computing systems, 2002.

[21] Batya Friedman, David Hurley, Daniel C. Howe, Helen Nissenbaum,
and Edward Felten. Users’ conceptions of risks and harms on the
web: a comparative study. In CHI ’02: CHI ’02 extended abstracts
on Human factors in computing systems, 2002.

[22] Craig Gentry, Philip Mackenzie, and Zulfikar Ramzan. Password
authenticated key exchange using hidden smooth subgroups. In CCS
’05: Proceedings of the 12th ACM conference on Computer and com-
munications security, 2005.

[23] Craig Gentry, Philip Mackenzie, and Zulfikar Ramzan. A method
for making password-based key exchange resilient to server compro-
mise. In CRYPTO, 2006.

[24] Oded Goldreich and Yehuda Lindell. Session-key generation using
human passwords only. J. Cryptol., 2006.

[25] L. Gong, MA Lomas, RM Needham, JH Saltzer, SRI Int, and
M. Park. Protecting poorly chosen secrets from guessing attacks.
IEEE Journal on Selected Areas in Communications, 11(5):648–656,
1993.

[26] P. Gutmann. Security Usability Fundamentals (Draft).
[27] J.A. Halderman, B. Waters, and E.W. Felten. A convenient method

for securely managing passwords. In Proceedings of the 14th inter-
national conference on World Wide Web, pages 471–479. ACM New
York, NY, USA, 2005.

[28] A. Herzberg and A. Gbara. Trustbar: Protecting (even naive) web

users from spoofing and phishing attacks. Computer Science De-
partment Bar Ilan University, 2004.

[29] Collin Jackson, Adam Barth, Andrew Bortz, Weidong Shao, and Dan
Boneh. Protecting browsers from dns rebinding attacks. ACM Trans.
Web, 2009.

[30] Collin Jackson, Daniel R. Simon, Desney S. Tan, and Adam Barth.
An evaluation of extended validation and picture-in-picture phishing
attacks. In Financial Cryptography, 2007.

[31] Markus Jakobsson and Steven Myers. Delayed password disclosure.
SIGACT News, 38(3), 2007.

[32] Chris Karlof, Umesh Shankar, J. D. Tygar, and David Wagner. Dy-
namic pharming attacks and locked same-origin policies for web
browsers. In CCS ’07: Proceedings of the 14th ACM conference
on Computer and communications security, 2007.

[33] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-
authenticated key exchange using human-memorable passwords. In
EUROCRYPT ’01: Proceedings of the International Conference on
the Theory and Application of Cryptographic Techniques, 2001.

[34] John Kelsey, Bruce Schneier, Chris Hall, and David Wagner. Secure
applications of low-entropy keys. In ISW ’97: Proceedings of the
First International Workshop on Information Security, 1998.

[35] T. Kwon. Authentication and key agreement via memorable pass-
word. In ISOC Network and Distributed System Security Symposium,
volume 20, pages 31–33, 2001.

[36] C.S. Ltd. SpoofStick home page.
[37] N. Ltd. Netcraft Toolbar. http://toolbar.netcraft.com,

2005.
[38] S. Lucks. Open key exchange: How to defeat dictionary attacks

without encrypting public keys. In Proc. of the Security Protocols
Workshop, LNCS 1361, 1997.

[39] P. MacKenzie and R. Swaminathan. Secure network authentication
with password identification. Submitted to the IEEE P, 1363, 1999.

[40] Philip D. MacKenzie, Sarvar Patel, and Ram Swaminathan.
Password-authenticated key exchange based on rsa. In ASIACRYPT
’00: Proceedings of the 6th International Conference on the Theory
and Application of Cryptology and Information Security, 2000.

[41] Minh-Huyen Nguyen and Salil Vadhan. Simpler session-key gener-
ation from short random passwords. J. Cryptol., 21(1), 2008.

[42] Yutaka Oiwa, Hiromitsu Takagi, Hajime Watanabe, and Hideki Imai.
Pake-based mutual http authentication for preventing phishing at-
tacks (extended abstract). In eCrime, 2007.

[43] B. Parno, C. Kuo, and A. Perrig. Phoolproof phishing prevention.
Lecture Notes in Computer Science, 4107:1, 2006.

[44] J.M.M.C.A. Perrig and M.K. Reiter. Safe Passage for Passwords and
Other Sensitive Data.

[45] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C.
Mitchell. Stronger password authentication using browser exten-
sions. In SSYM’05: Proceedings of the 14th conference on USENIX
Security Symposium, 2005.

[46] Stuart E. Schechter, Rachna Dhamija, Andy Ozment, and Ian Fis-
cher. Emperor’s new security indicators: An evaluation of website
authentication and the effect of role playing on usability studies. In
Proceedings of the IEEE Symposium on Security and Privacy, 2007.

[47] Steffen Schulz. Implementierung sicherer passwort-authentisierung
in mozilla tls, August 2007. https://cbg.dyndns.org/
store/srp/report_tls-srp.pdf.

[48] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri,
and Lorrie Faith Cranor. Crying wolf: An empirical study of ssl
warning effectiveness. manuscript, 2008.

[49] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin. Using the
Secure Remote Password (SRP) protocol for TLS authentication.
Technical report, RFC 5054, Nov. 2007. http://www.ietf.
org/rfc/rfc5054.txt.

[50] Dan Wendlandt, David Andersen, and Adrian Perrig. Perspectives:
Improving SSH-style host authentication with multi-path probing. In
Proc. USENIX Annual Technical Conference, 2008.

[51] Min Wu, Robert C. Miller, and Simson L. Garfinkel. Do security
toolbars actually prevent phishing attacks? In CHI ’06: Proceedings
of the SIGCHI conference on Human Factors in computing systems,

8



2006.
[52] Min Wu, Robert C. Miller, and Greg Little. Web wallet: Prevent-

ing phishing attacks by revealing user intentions. In Symposium On
Usable Privacy and Security (SOUPS), July 2006.

[53] T. Wu et al. The secure remote password protocol. In Proceedings of
the 1998 Internet Society Network and Distributed System Security
Symposium, volume 1, pages 97–111, 1998.

[54] Thomas Wu. Srp-6: Improvements and refinements to the secure
remote password protocol. October 2002.

[55] Ka-Ping Yee and Kragen Sitaker. Passpet: convenient password man-
agement and phishing protection. In SOUPS ’06: Proceedings of the
second symposium on Usable privacy and security, 2006.

[56] K.P. Yee. Designing and Evaluating a Petname Anti-Phishing Tool.
In Poster presented at Symposium on usable Privacy and Security
(SOUPS), pages 6–8, 2005.

[57] Yue Zhang, Serge Egelman, Lorrie Cranor, and Jason Hong. Phind-
ing phish: Evaluating anti-phishing tools. In In Proceedings of the
14th Annual Network and Distributed System Security Symposium
(NDSS), 2007.

9


