Document Structure Integrity: A Robust Basis for Cross-site Scriping Defense

Yacin Nadjif Prateek Saxena Dawn Song
lllinois Institute of Technology University of California University of California
Chicago, IL, USA Berkeley, CA, USA Berkeley, CA, USA
yacin@ir.iit.edu prateeks@eecs.berkeley.edu dawnsong@cs.berkeley.edu
Abstract tional vulnerabilities observed in that period [36]. Web-Ap

plication Security Consortium’s XSS vulnerability report

Cross-site scripting (or XSS) has been the most domi-shows that ove30% of the web sites analyzed in 2007 were
nant class of web vulnerabilities in 2007. The main under- vulnerable to XSS attacks [42]. In addition, there exist-pub
lying reason for XSS vulnerabilities is that web markup and licly available XSS attack repositories where new attacks
client-side languages do not provide principled mechagism are being added constantly [43].
to ensure secure, ground-up isolation of user-generated Web languages, such as HTML, have evolved from light-
data in web application code. In this paper, we develop weight mechanisms for static data markup, to full blown
a new approach that combines randomization of web ap- vehicles for supporting dynamic code execution of web ap-
plication code and runtime tracking of untrusted data both plications. HTML allows inline constructs both to embed
on the server and the browser to combat XSS attacks. Ourntrusted data and to invoke code in higher-order languages
technique ensures a fundamental integrity property thet pr such as JavaScript. Due to their somewhat ad-hoc evolu-
vents untrusted data from altering the structure of trusted tion to support demands of the growing web, HTML and
code throughout the execution lifetime of the web applica- other web languages lack principled mechanisms to sepa-
tion. We call this propertglocument structure integritypr rate trusted code from inline data and to further isolate un-
DSI). Similar to prepared statements in SQL, DSI enforce- trusted data (such as user-generated content) from trusted
ment ensures automatic syntactic isolation of inline user- data. As a result, web developers pervasively use fragile
generated data at the parser-level. This forms the basis forinput validation and sanitization mechanisms, which have
confinement of untrusted data in the web browser based orbeen notoriously hard to get right and have lead to numerous
a server-specified policy. subtle security holes. We make the following observations

We propose a client-server architecture that enforces explaining why it is not surprising that XSS vulnerabilétie
document structure integrity in a way that can be imple- plague such a large number of web sites.
mented in current browsers with a minimal impact to com-
patibility and that requires minimal effort from the web de-

| We impl ted fof t and d Purely server-side defenses are insufficientServer-side
veloper. VVe Implemented a proot-o-concept and demon- ,iqation of untrusted content has been the most commonly
strated that such DSI enforcement with a simple default pol-

o - adopted defense in practice, and a majority of defense tech-
icy is sufficient to defeat over 98% of 5,328 real-world re- P P Jorty

nigues proposed in the research literature have also fo-
flected XSS vulnerabilities documented in 2007, with very 9 brop

[f head both on the client and cused on server-side mitigation [3, 44, 5, 16, 25, 22]. A
oW periormance overhead both on the client and SeVer. qommon problem with purely server-side mitigation strate-

gies is the assumption that parsing/rendering on the client

browser is consistent with the server-side processing. In
1 Introduction practice, this consistency has been missing. This weak-

ness has been targeted by several attacks recently. For ex-

Cross-site scripting (XSS) attacks have become the mos@MPI€, one such vulnerability [34] was found in Facebook
prevalent threat to the web in the last few years. Accord- " 2008. The vulnerability is that the server-5|de.XSS. 1_‘|I-
ing to Symantec’s Internet Threat Report, over 17,000 site- ter recognizes the:™ character as a namespace identifier

specific XSS vulnerabilities have been documented in 2007S€Parator, whereas the web browser (Firefox £.0.0.2)
alone, which constitute over 4 times as many as the tradi-Strip it as a whitespace character. As a result, a string such
as <ing src="‘..."" onload: =attackcode>

*This work was done while the author was visiting UC Berkeley. is interpreted by the browser ad ng src=""'...""’

Browser \ # Attacks \ application code written in client-side scripting langaag

Internet Explorer 7.0 49

Internet Explorer 6.0 89 XSS attacks are not limited to JavaScript injection and
Netscape 8.1-IE Rendering 89 cookie-stealing. Attackers need not use JavaScript as a
Netscape 8.1-Gecko Rendering 47 vector for script based attacks — attack vectors can be based
Firefox 2.0 45 on Flash (ActionScript), QuickTime, VBScript, CSS, XUL
Firefox 1.5 50 and even languages supported by web browser extensions.
Opera 9.02 61 For instance, XSS attacks were demonstrated using certain
Netscape 4 5 features of the PDF language supported by Adobe Acrobat

Reader plugin for the web browser [29]. Another observa-
Figure 1: XSS attacks vary significantly from browser to tion worthy of note is that XSS vulnerabilities can result in
browser. A classification of 92 publicly available XSS at- damage well beyond automatic password or cookie theft.
tacks showing the diversity in the number of attacks that One compelling example of an attack that does not target
affect different web browsers [12]. cookie theft, is the recent XSS vulnerability on a banking
web site reported by Netcraft [26]. Fraudsters exploitésl th
vulnerability for a phishing attack, by injecting a modified
onl oad=at t ackcode>, which executeat t ackcode login form (using ari f r ane) onto the bank’s login page.
as a JavaScript code. In contrast, the Facebook XSS filtefrhjs allows the attacker to steal the user's credentials by
fails to recognize the attack strirag t ackcode as code paying them manually submit their credentials, rather than
altogether. In general, it is problematic to expect the web covertly stealing the password via a script.
server to accurately validate input data consistently with
the browser, because actual browser behavior varies with S)
browser implementation quirks and user configuration set- Content validation is an error-prone mechanism.The
tings. Figure 1 highlights the diversity in the range of at- most commonly used mechanism for preventing XSS is val-

tacks that a user may be susceptible to depending on thddation of untrusted dataSanitizationis one kind of val-
browser implementation being used. idation which removes possibly malicious elements from

untrusted datagscapings another form which transforms

dangerous elements so that they are prevented from be-
Integrity of client-side scripting code is subjectto dyn&m jng interpreted as special characters. Balzarotti et. 3l. [
attacks. Several attacks target code injection vulnerabili- showed that sanitization mechanism is often insufficient to
ties in client-side scripting code which processes ungdist prevent all attacks, especially when web developers use
data in an unsafe manner during its execution. Such attackgystom built-in sanitization routines provided by popular
subvert the integrity of dynamic operations performed by scripting languages such as PHP. In general, there has been
web applications in the browser. Automatic XSS detection pg “one-size-fits-all” sanitization mechanism, as valioiat
tools which employ server-side static analysis [22] or run- checks change with the policy that the server wishes to en-
time analysis [44] are designed to identify attacks that tar force and no single primitive filters out dangerous content

get integrity of HTML code alone; these tools are severely jndependent of the context where the untrusted data is in-
handicapped as they do not model semantics of a diversgjned and used.

set of client-side languages supported by the browser. With
the increasing popularity of AJAX applications such XSS
vulnerabilities are a serious threat for Web 2.0 applicetio
The onus of eliminating such vulnerabilities places heavy
burden on web developers who are ill-equipped to robustly

detect ghem bgfore deplqyme?t. One exslmple of a:)tackrs that 1. The defense should not rely on server-side sanitization
target dynamic processing of untrusted content by client- of untrusted data; instead it should form a second level

sider;lav_aScri?t is the vulnerabilityk; [20]|_in tr_'e Onlirr:eNovl\{ of defense to safeguard against holes that result from
mechanism of MySpace.com web application. The Onli- error-prone sanitization mechanism.

neNow mechanism provides dynamic online/offline status

of a user’s friends on MySpace. The vulnerability allows an 2 The defense should confine untrusted data in a manner

attacker “friend” to place a craftecti v>tag below his/her consistent with the browser implementation and user
picture, which when viewed by a victim causes a JavaScript configuration.

eval statement to execute the attacker’'s code. Such vul-
nerabilities are not targeted at lack of validation in serve 3. The defense must address attacks that target server-
side scripting code (such as PHP); rather they target web side as well as client-side languages.

Defense Requirements. Based on these empirical obser-
vations, we formulate the following four requirements for a
cross-site scripting defense.

4. The defense should proactively protect against attacks Our work builds on several recent works which have
without relying on detection of common symptoms of identified the need for policy-based confinement and iso-
malicious activity such as cross-domain sensitive in- lation of untrusted data [15, 21, 7]. We discuss our key
formation theft. extensions and provide an analytical comparison with pre-

vious works in sections 8 and 10. In comparison to ex-

isting XSS defenses, DSI enforcement offers a more com-
prehensive defense against attacks that extend beyopd scri
injection and sensitive information stealing, and safedsia
against both static as well as dynamic integrity threats.

Our Approach. In this paper, we develop an approach
that significantly shifts the burden of preventing XSS at-
tacks from the web developer to the web execution plat-
form. Our approach can be implemented transparently in
the web server and the browser requiring minimal web de-
veloper intervention and it provides a second line of defens Summary of Contributions. We outline the contribu-
for preventing XSS attacks. In our approach, XSS is viewed tions of this paper below.

as a privilege escalation vulnerability, as opposed to an in
put validation problem. Sanitization and filtering/escapi

of untrusted content aims to block or modify the content
to prevent it from being interpreted as code. Our approach
does not analyze the values of the untrusted data; instead,
it restricts the interpretation of untrusted content to- cer
tain lexical and syntactic operations—more like a type sys-
tem. The web developer specifies a restrictive policy for
untrusted content, and the web browser enforces the speci-

e We develop a new approach to XSS defense that pro-
vides principled isolation and confinement of inline
untrusted data that has the following distinguishing
features.

— Employs a new markup randomization scheme,
which is similar to instruction set randomiza-
tion [17], to provide robust isolation in the face
of an adaptive attacker.

fied policy.

To realize this system we propose a new scheme, which — Preserves the structural integrity of the web ap-
uses markup primitives for the server to securely demar- plication code throughout its lifetime includ-
cate inline user-generated data in the web document, and ing during dynamic updates and operations per-
is designed to offer robustness in the face of an adaptive formed by execution of client-side code.
adversary. This allows the web browser to verifiably iso- — Ensures that confinement of untrusted data is
late untrusted data while initially parsing the web page. consistent with the browser processing.

Subsequently, untrusted data is tracked and isolated as it
is processed by higher-order languages such as JavaScript.
This ensures the integrity of the document parse tree —
we term this property adocument structure integritgor
DSI). DSl is similar to PreparedStatements [9] which pro-
vide query integrity in SQL. DSI is enforced using a fun-
damental mechanism, which we cphrser-level isolation
(or PLI), that isolates inline untrusted data and forms the
basis for uniform runtime enforcement of server-specified
syntactic confinement policies.

We discuss the deployment of this scheme in a .
client-server architecture that can be implemented with a2 XSS Definition and Examples
minimum impact to backwards compatibility in modern
browsers. Our proposed architecture employs server-side An XSS vulnerability is one that allows injection of un-
taint tracking proposed by previous research to minimize trusted data into a victim web page which is subsequently
changes to the web application code. We implemented ainterpreted in a malicious way by the browser on behalf of
proof-of-concept that embodies our approach and evaluatedhe victim web site. This untrusted data could be interprete
it on a dataset of 5,328 web sites with known XSS vulnera- as any form of code that is not intended by the server’s pol-
bilities and 500 other popular web sites. Our preliminary icy, including scripts and HTML markup. We treat only
evaluation demonstrates that parser-level isolation with user-generated input as untrusted and use the terms “un-
single default policy is sufficient to nullify oveX8% of the trusted data” and “user-generated data” interchangeably i
attacks we studied. Our evaluation also suggests that outhis paper. We also refer to content as being eiffaesive
techniques can be implemented with very low false posi- i.e, consisting of elements derived by language terminals
tives, in contrast to false positives that are likely to eris (such as string literals and integers)-active i.e, code that
due to fixation of policy in purely client-side defenses. is interpreted (such as HTML and JavaScript).

— Eliminates some of the main difficulties with
server-side sanitization mechanism.

e We empirically show that DSI enforcement with a sin-
gle default policy effectively thwarts oved8% of re-
flected real-world attack vectors we study. We discuss
how the full implementation of client-server architec-
ture could achieve these gains at very low performance
costs and with almost no false positives.

1: <body>

2: <di v id=" Wl coneMess’ > Wl conme! </div>

3: <div id="$CGET[’ Friendl D-Status’]’ nanme="status’ > </div>

4: <script>

5: i f($CET[' MainUser’]) {

6: docunent . get El ement Byl d(’ Wl coneMess’). i nner HTM. =

7: "Wel come" + "$CET[’ MainUser’]";

8: }

9: var di vnane = docunent. get El enent sByNanme("status")[0].id;
10: var Name = divnane.split("=")[0]; var Status = divnane.split("=")[1];
11: eval ("di vhanme.innerHTML = \"" + Name + " is " + Status + "\"");
12: </script>
13: </ body>

Figure 2: Running example showing a snippet of HTML pseudeagenerated by a vulnerable social networking web site

server. Untrusted user data is embedded inline, identifredd$GET[* . . .’] variables.

| | Untrusted variable | Attack String |
Attack 1 | $GET[’ Friendl D-Status’] | ' onnmouseover =j avascri pt: docunent. | ocation="http://a.conf
Attack 2 | $GET[' Mai nUser "] </ script><script>al ert (docunment. cooki e); </script>
Attack 3 | $GET[’ Friendl D-Status’] | Attacker=0nline"; al ert(docunent.cookie);+"
Attack 4 | $CGET[' Mai nUser’] <iframe src=http://attacker.conp</iframe>

Figure 3: Example attacks for exploiting vulnerabilitiesHigure 2.

Running Example. To outline the challenges of pre-
venting exploits for XSS vulnerabilities, we show a toy
example of a social networking site in Figure 2. The
pseudo HTML code is shown here and places where un-
trusted user data is inlined are denoted by elements of
$CET['...’'] array (signifying data directly copied
from GET/POST request parameters). In this example, the
server expects the value $GET[' Mai nUser '] to con-

tain the name of the current user logged into the site, and
$CGET[' Friendl D- St at us’] to contain a string with
the name of another user and his status message (“online”
or “offline”) separated by a delimiter (“="). Assuming no
sanitization is applied, this code has at least 4 placesavher
vulnerabilities arise, which we illustrate with possibbe e
ploits! summarized in Figure 3.

e Attack 1: String split & Attribute injectionin this at-
tack, the untruste@GET[’ Fri endl D- St at us’]
variable could prematurely break out of thel at-
tribute of the<di v> tag on line 3, and inject un-
intended attributes and/or tags. In this particular in-
stance, the attack string shown in Figure 3 closes
the string delimited by the single quote character,
which allows the attacker to inject tlmmnouseover
JavaScript event. The event causes the page to redirect

1The sample attacks are illustrative of attacks seen in thie piad are
not guaranteed to work on all browsers. See Figure 1 for mdeslsle

to ht t p: / / a. compotentially fooling the user into
trusting the attacker’s website.

A similar attack is possible at line 7, wherein the at-
tacker breaks out of the JavaScript string literal using
an end-of-string delimiter'() character in the value for
the variablebGET[' Mai nUser '] .

Attack 2: Node splitting Even if this server san-
itizes $CET[' Mai nUser’] on line 7 to disallow
JavaScript end-of-string delimiters, another attack is
possible. The attacker could inject a string to split the
enclosing<scri pt > environment, and then inject a
newscr i pt tag, as shown by the second attack string
in Figure 3.

Attack 3. Dynamic code injectionA more subtle at-
tack is one that targets the integrity of theal query

on line 11. Notice that JavaScript variailane and

St at us are derived from parsing the untrusted of
thedi v element on line 3. Even if the server sanitizes
the$GET[’ Fri endl D- St at us’] value for use in
thedi v element context on line 3 by removing the
delimiter, the attacker could still inject code in the dy-
namically generated javascripval statement. The
vulnerability on line 10 parses thied attribute value
of each div element into separate user name and status
variables, which performs no sanitization for variable
namedsSt at us. The attacker can use an attack string

value as shown as the third string in Figure 3 to execute term it as thedocument structuteln our approach, we en-

the arbitrary JavaScript code at line 11. sure that the browser can identify and isolate nodes derived
from user-generated data, in the parse tree during parsing.

e Attack 4: Dynamic active HTML updateThe at- In principle, we whitelist the intended document structure
tacker could inject active elements inside thai v> and prevent the untrusted nodes from changing this struc-

with id Vel coneMess at line 6-7, by using the ture in unintended ways. We call the property of ensuring

fourth attack string in Figure 3 as the value for intended document structure as enforcttarument struc-

$GET[' Mai nUser’] . This attack updates the web ture integrityor DSI.

page DOM? tree dynamically on the client side after e clearly separate the notion ofcanfinement policy

the web page has been parsed and the script code hagom the parser-level isolation mechanism. As in our run-

been executed. ning example, web sites often wish to restrict untrusted dat
to leaf nodes in the document structure, as this is an effec-

Motivation for our approach. We observe that all of the tive way to stop an attacker from injecting active content.

attacks outlined in Figure 3 require breaking the intended Ve réfer to this confinement policy &sminal confinement
structure of the parse tree on the browser. The resulting"e" confinement of untrusted data to leaves in the document

parse trees from all attacks are shown superimposed in Fig__structure, or equivalently, to strings derived from terain

ure 4. It is worth noting that attacks 1 and 2 break the struc- " the grammar representing valid web pages. Figure 5 is
ture of the web page during its initial parsing by the HTML the parse tree obtained by DSI enforcement for our running
and JavaScript parsers, whereas attack 3 and 4 alter the do&xample- _ _
ument structure during dynamic client-side operations. The server may wish to instruct the browser to enforce
If the browser could robustly isolate untrusted data on °ther higher-level semantic policy, such as specifying-a re
the web page, then it caquarantineuntrusted data with ~ Stricted sandbox, but this is possible only if the underly-
respect to an intended policy. In this example, the server"d language or application execution framework provides
wishes to coerce untrusted nodes to leaf nodes in the parsB/Mitives that prevent an attacker can from breaking out

tree, by treating them as string literals. This disallows of the confinement.region. .For instance, Fhe New pro-
injection of any language non-terminal (possible active posal ofsandboxattlnbutes fori f rame tags (mtroduped
HTML/JavaScript content) in the web page. in HTML 5 [40]) defines semantic confinement policies for

These examples bring out the complexity in defending untr_usted data from gnother domai”- H_owev_er, it rglie_s on
against attacks with sanitization alone. To reinforce dur o the_| frame abstraction to provu_je the !solatlon. Slm_|lar
servations, it is easy to understand that server side zaniti ol f-r.am.es, DSl forms the ba§|s for higher Ie.ve.l pollcy
tion would be hard to perform in a moderately large appli- specification on W?b page regions that contain inline un-
cation. The application developer would need to understandtrusted dgta. Our. |solat|.on pnmﬂyes have no dgpgndence
all possible contexts in which the data could be used with on e_scaplng/quotlng or Input sanitization for their mtﬂrn_
respect to multiple languages. Sanitization for each kind o working, thus _maklng our mechamsm a strong s_econd I'ne
active content varies based on the policy that server WishesOf defens_e fqr input validation checks already being used in
to enforce, and could also vary based on the target browsers" eb application code.
mechanism for rendering. Attacks need not be JavaScript
based and may target a variety of goals (scripting with FlashKey challenges in ensuring DSI in web applications.The
and click fraud, in addition to sensitive information steal- high-level concept of terminal confinement has been pro-
ing). posed to defend against attacks such as SQL injection [35],
but HTML differs from SQL in two significant ways.
First, HTML can embed code written in various higher-
order languages which share the same inline data. For
instance, there are both generic (such as JavaScript URI)

Web pages are parsed by various language parsers thaing browser-specific ways to invoke functions in VBScript,
are part of the web browser into internal parse trees. Un-xy| JavaScript, CSS and so on. To account for this dif-
der a benign query, the web server produces a web paggjculty, we treat the document structure as that implied by
that when parsed, results in a parse tree with a certain-strucipe superimposition of the parse trees obtained from code

server aims to allow in the web document, and hence wejn 3 web page.

2DOM is the parse tree for the HTML code of the web page _A ?econd dlS_tIﬂgUIShlng c_hallenge .In S.ecu“ng web ap-
3Using XSS to trick the user into clicking a “pay-per-clickihk or plications, specially AJAX driven applications, is thaeth

advertisement through injecting HTML [11]. document parse trees can be dynamically generated and

3 Approach Overview

script

script

alert
ument.cool

Attack 2

javascript:document.location=
"http://a.com"

Attack 1

Attack 4 Attack 3

Figure 4: Coalesced parse tree for the vulnerable web pag@inme 2 showing superimposition of parse trees resulting
from all attacks simultaneously. White node show the validnded nodes whereas the dark nodes show the untrusted nodes
inserted by the attacker.

updated on the client side. In real web pages, code inding untrusted content that results in escalated inteapret
client-side scripting languages parses web content asyn+tion of untrusted data. These three goals enforce DSI based
chronously, which results in repeated invocations of dif- on uniform parser-level isolation.

ferent language parsers. To address dynamic parsing,

we treat the document structure as having two different gytline of Mechanisms. We view the operation of encod-
components—a static component and a dynamic one. Aing the web page in HTML, merely aerialization(or mar-

web page must have static document structuyg.e., the shalind) of the content and the static document structure
document structure implied by the parse tree obtained fromon the server side, and browser-side parsing of HTML as
the initial web page markup received by the browser. Sim- the deserialization step. We outline 4 steps that implement
ilarly, a web page also hasdynamic document structure p| and ensure the document structure is reconstructed by

i.e., the structure implied by the set of parse trees crésted the browser from the point that the web server generates the
different parsers dynamically. To illustrate the distiont web page.

we point out that attacks 1 and 2 in our running example

violate static DSI, whereas attacks 3 and 4 violate dynamic g\ o side. There are two steps that the server takes.

DSI.

e Step 1—Separation of trusted and user-generated
Goals. Parser-level isolation is a set of mechanisms to data As a first step, web servers need to identify un-
ensure robust isolation of untrusted data in the document ~ trusted data at their output interface, and should dis-
structure throughout the lifetime of the web application. tinguish it from trusted application code. We make
Using PLI we outline three goals that enforce DSI for a this assumption to begin with, and discuss some ways
web page with respect to a server-specified policy, say [0 achieve this step through automatic methods in
P. First, we aim to enforcstatic DSI with respect td, Section 5. We believe that this is not an unrealis-
from the point web page is generated by the server to the ~ {iC @ssumption—previous work on automatic dynamic
point at which it is parsed into its initial parse trees in the ~ faint tracking [44, 27] has shown that tracking un-
browser. As a result, the browser separates untrusted data ~ rusted user-generated data at the output interface is
from trusted data in its initial parse tree robustly. Segond possible; in fact, many popular server-side scripting
we aim to enforcedynamic DSI with respect t& in the language interpreters (such as PHP) now have built-in

browser,_ across all subsequent parsing operations. Third, 45y to serialization in other programming languages and RPehme
we require that the attacker can not evade PLI by embed-anisms

body script

"</script><script>alert
(document.cookie);</script>"

'WelcomeMess'

Attack 2

"<iframe
src='www.attacker.com'>
</iframe>

'onmouseover=javascript:document.location=
"http://a.com"

divname.innerHTML

Attack 4 Attack 1

"Attacker is Online"; alert
(document.cookie);"

Attack 3

Figure 5: Coalesced parse tree (corresponding to parsentfégure 4) resulting from DSI enforcement with the terntina
confinement policy—untrusted subtrees are forced into ledés.

support for this. Our goal in subsequent steps is to sup- ically. Language parsers for HTML and other higher-
plement integrity preserving primitives to ensure that order languages like JavaScript are modified to disal-
the server-specified policy is correctly enforced in the low quarantined data from being used during parsing
client browser, instead of the sanitization at the server in a way that violates the policy. This step removes the
output interface for reasons outlined in Section 1. burden of having the client-side code explicitly check
integrity of the dynamic document structure, as it em-

Step 2—Serialization: Enhancement of stafic struc- pes a reference monitor in the language parsers them-

ture with markup The key to robust serialization is selves. Thus, no changes need to be made to existing
to prevent embedded untrusted data from subverting client-side code for DSI-compliance.

the mechanism that distinguishes trusted code from in-

line untrusted data in the browser. To prevent such .

attacks, we propose the idea of markup randomiza-4 Enforcement Mechanisms

tion, i.e., addition of non-deterministic changes to the

markup. This idea is similar to instruction set random- \We describe the high level ideas of the mechanisms in
ization [17] proposed for preventing traditional vulner- this section. Concrete details for implementing these are
abilities. described in Section 5.

Browser-side. There are two steps that the browser takes. 4.1 Serialization

e Step 3—Deserialization: Browser-side reconstruction
of static document structurelThe web browser parses
the web page into its initial parse tree, coercing the
parse tree to preserve the intended structure. Thus, i
can robustly identify untrusted data in the document
structure at the end of the deserialization step.

Web pages are augmented with additional markup at the
server’s end, in such a way that the browser can separate
ttrusted structural entities from untrusted data in theicstat
document structure. We call this step serialization, aml it
ideally performed at the output interface of the web server.

Step 4—Browser-side dynamic PLThis step iS agaptive Attacks. One naive way to perform serializa-
needed to ensure DSI when web pages are dynamicalltion, s to selectively demarcate or annotate untrusted data
updated. In essence, once untrusted data is identified irn the web page with Specia| markup_ The key concern is
the browser at previous step, we initialize it(pgran- that an adaptive attacker can include additional markup to
tinedand track quarantined data in the browser dynam- evade the isolation. For instance, let us say that we embed

3. <divid= [os6,GET[" Friendl d-Status’] Jose" > data are surro_uqded by special deli.miters. Delimiters are
4 : <script> added around inlined untrusted data independent of the con-
5 if ([3046 GET[' MainUser’] Js046) { text where the data is embedded. For our running example
shown in the Figure 2, the serialization step places these
delimiters around all occurrences of tB&ET array vari-
Figure 6: Example of minimal serialization using random- gples. If the markup elements used as delimiters are stat-
ized delimiters for lines 3-5 of the example shown in Fig- jcally fixed, an adaptive attacker could break out of the con-
ure 2. finement region by embedding the ending special delimiter
in its attack string as discussed above. We propose an alter-
native mechanism callesharkup randomizationo defend
against such attacks.

The idea is to generate randomized markup values for

the untrusted data in a contained region with a special tag
that disallows script execution that looks like:

<di v cl ass="noexecute"> special delimiters each time the web page is served, so that
possi bl y-nal i ci ous content the attacker can not deterministically guess the confining
</ di v> context tag it should use to break out. Abstractly, the serve

) _ _ appends a integer suffix ¢ € C to a matching paif] |
This scheme is proposed in BEEP [15]. As the authors f gelimiters enclosing an occurrence of untrusted data, to
of BEEP pointed out, this naive scheme is weak becausegeneratqp], while serializing. The sef' is randomly gen-
an adaptive attacker can prematurely closettiev>en- erated for each web page served.is sent in a confiden-
vironment by including &/ di v> in a node splitting at- tj5|, tamper-proof communication to the browser along with
tack. The authors of BEEP suggest an alternative mechatne wep page. Clearly, if we use a pseudo-random number
nism that encodes user data as a JavaScript string, and USQfenerator with a seef, to generate”, it is sufficient to
server-side quoting of string data to prevent it from esogpi send{C,, n}, wheren is the number of elements ifi ob-
the JavaScript string context. They suggest the following tzined by repeated invocations of the pseudo-random num-
scheme: ber generator. In the Figure 6 , we show the special de-
limiters added to the lines 3-5 of our running example in
Figure 2. One instance of a minimal serialization scheme
is the tag matching scheme proposed in the inforjnaall
tag[7], which is formally analyzed by Louw et. al. [21].

<di v cl ass="noexecute" id="n5"></div>
<scri pt>

docunent . get El enent Byl d("n5").i nnerHTM. =

"quot ed possibly-nalicious content";
</script>

) .) _ Full Serialization. An alternative to minimal serializa-

~ We point out that it can be tricky to prevent the mali- jon is to mark all trusted structural entities explicitiyhich
cious content from breaking out of even the simple static \ye call full serialization. For markup randomization, the
JavaScript string context. It is not sufficient to quote the gapyer appends a random suffix € C, to each trusted ele-
JavaScript end-of-string delimiters) — an attack string ment (including HTML tags, attributes, values of attritgjte
such as</ scri pt><iframe>...</ifranme> perpe- strings) and so on.
trates a node_splitting at.ta?ck closing the script enyiromlme Though a preferable mechanism from a security stand-
altogether, without explicitly breaking out the string €on int we need a scheme that can mark trusted elements
text. Sanitization of HTML special characters> might j,gependent of the context of occurrence with a very fine
solve this instance of the problem, but a developer may notg anylarity of specification. For instance, we need mech-

employ such a restrictive mechanis_m if the server’s policy 4nism to selectively mark thied attribute of thedi v ele-
allows some form of HTML markup in untrusted data (such ant of line 3 in the running example (shown in Figure 2)

as<p> or <b? tags in user contept)- . . as trusted (to be able to detect attribute injection atjacks
Our goal is to separate the isolation mechanism from yithoyt marking the attribute value as trusted. Only then
the policy. The above outlined attack reiterates that con- .5 we selectively treat the value part as untrusted which

tent server-side quoting or validation may vary depending can pe essential to detect dynamic code injection attacks,
upon the web application’s policy and is an error-prone pro- ¢ ,ch as attack 3 in Figure 3.

cess; keeping the isolation mechanism independent of input
validation is an important design goal. We propose the fol- ;|
lowing serialization schemes as an alternative.

Independently and concurrent with our work, Gundy et.
have described a new randomization based full seri-

alization scheme, called Noncespaces [10] that uses XML

namespaces. However, XML namespaces does not have the

Minimal Serialization. In this form of serialization, only required granularity of specification that is describedvaho

the regions of the static web page that contain untrustedand hence we have not experimented with this scheme. Itis

V — [N]. {N.mark = Untrusted;} 3 . <div id="

: "[rapm- - A g >
X —1Yy {if (X.mark == Untrusted) 4 <scripts lssor - L2 ssor
then (Yi.mark = X.mark; 51 0if ([3046 -+ Joooo- -+ lzo46) {
Yo.mark = X.mark;)

el se (Yi.mark = Trusted;, }
Yo.mark = Trusted;)

Figure 8: One possible attack on minimal serialization, if
Figure 7: Rules for computingar k attributes in minimal C were not explicitly sent. The attacker provides delimiters
deserialization. with the suffix 2222 to produce 2 valid parse trees in the
browser.

possible, however, to apply the full serialization schere d

scribed therein as part of our architecture as well, sairific The rules to compute the inherited attributar k are
some of the dynamic |ntegr|ty protection that is 0n|y possi_ deﬁned in Figure 7, W|tmrar k attribute forS |n|t|al|zed to
ble with a finer-grained specification. We do not discuss Tr ust ed.

full serialization further, and interested readers arerrefi

to Noncespace [10] for details. Fail-Safe. Appending random suffixes does not lead to ro-
o bust design by itself. Sending the ggtof random values
4.2 Deserialization used in randomizing the additional markups adds robustness

against attacker spoofing delimiters.

When the browser receives the serialized web page, it To see why, suppos€ was not explicitly sent in our
first parses it into the initial static document structureeT design. Consider the scenario where an adaptive attacker
document parse tree obtained from deserialization can veri tries to confuse the parser by generating two valid parse
fiably identify the untrusted nodes. trees. In Figure 8 the attacker embeds delimjtgg, in

CET[’ Friendl d- Status’] and a matching delimiter
Minimal deserialization . Conceptually, to perform de- 2202 in GET[’ Mai nUser’] . There could be two valid
serialization the browser parses as normal, except that itparse trees—one that matches delimiters with suffix 5367
does special processing for randomized delimifer$... It and 3246, and another that matches the delimiters with suf-
ensures that the token correspondinj tmatches the token ~ fix 2222. Although, the browser could allow the former to
corresponding td_, iff their suffixes are the same random be selected as valid as delimiter with 5367 is seen first ear-
valuec andc € C. It also marks the nodes in the parse tree lier in the parsing, this is a fragile design because it selie

that are delimited by special delimiters as untrusted. on the server’s ability to inject the constraining tag finstla
requires sequential parsing of the web page. In practice, we
Algorithm to mark untrusted nodes. Minimal deserial- can even expect the delimiter placement may be imperfect

ization is a syntax-directed translation scheme, which-com OF Missing in cases. For instance in Figure 8, if the special
putes an inherited attributevar k, associated with each delimiters with suffix 5367 were missing, then even if the

node in the parse tree, denoting whether the node isServer had sanitize@ET[’ Fri endl d-Status’] per-
Trust ed or Unt r ust ed. For the sake of conceptual ex- [€Ctly against string splitting attack (attack 1 in Sect®g)n

planation, let us assume that we can represent valid wedhe attacker possesses an avenue to inject a spurious de-

pages that the browser accepts by a context-free graimar Imiter tag [2552. All subsequent tags placed by the server
5LetG = {V,%,S, P} , whereV denotes non-terminals would be discarded in an attempt to match the attacker pro-

3} denotes terminals including special delimitefsjs the vided d(_alimiter. The a_tttacker’s abiIiFy to inject isolatio
start symbol, and? is a set of productions. Assuming that markup is a weakness in the mechanism which does not ex-

C'is the set of valid randomized suffix values, the serializedPlicitly send C'. The informal<j ai | > proposal may be
web pages obeys the following rules: susceptible to such attacks as well [7]. Our explicit com-

(a) All untrusted data is confined to a subtree rooted Munication ofC' alleviates this concern.
at some non-terminalN, such that a productiony —

[.N],, isinP. 4.3 Browser-side dynamic PLI
(b) Productions of the formy — [, N ,c1 # co are

not allowed in P. Once data is marked untrusted, we initialize it as quar-
(c) Ve € C, all productions of the formV — [N]. antined. With each character we associatgarantine bit

are valid in P. signifying whether it is quarantined or not. We dynamically
Spractical implementations may not strictly parse contee-geam- track quarantined metadata in the browser. Whenever the

mars base type of the data is converted from the data type in one

language to a data type in another, we preserve the quaran- 1. Render in non-compliafbrowsers, with minimal im-

tine bit through the type transformation. For instance,nvhe pact At least the trusted part of the document should

the JavaScript code reads a string from the browser DOM render as original in non-compliant browsers. Most

into a JavaScript string, appropriate quarantine bit is pre user-generated data is benign, so even inlined un-
served. Similarly, when a JavaScript string is written back trusted data should render with minimal impact in non-

to a DOM property, the corresponding HTML lexical enti- compliant browsers.

ties preserve the dynamic quarantine bit.

Quarantine bits are updated to reflect data dependences
between higher-order language variables, i.e. for arittame
and data operations (including string manipulation), the
destination variable is marked quarantined, iff any source
operand is marked quarantined. We do not track control
dependence code as we do not consider this a significant 3. Require minimal web application developer effakt-
avenue of attack in benign application. We do summa- tomated tools should be employed to retrofit DSI
rize quarantine bit updates for certain functions whicluites mechanisms to current web sites, without requiring a
in data assignment operations but may internally use table huge developer involvement.
lookups or control dependence in the interpreter implemen-
tation to perform assignments. For instance, the JavaScrip5.2 Client-Server Co-operation Architecture
String. f romChar Code function requires special pro-
cessing, since it may use conditional switch statement or a |dentification of Untrusted data. Manual code refac-
table-lookup to convert the parameter bytes to a string ele-toring is possible for several web sites. Several web mashup
ments. In this way, all invocations of the parsers track quar components, such as Google Maps, separate the template
antined data and preserve this across data structures repreode of the web application from the untrusted data already,
senting various parse trees. but rely on sanitization to prevent DSI attacks. Our explici

Example. For instance, consider the attack 3 in our ex- mechanisms would make this distinction easier to specify
ample. It constructs a parse tree for theal statementas and enforce.
shown in Figure 4. The initial string representing the ter- Automatic transformation to enhance the markup gener-
minali d on line 3 is marked quarantined by the deserial- ated by the server is also feasible for several commercial
ization step. With our dynamic quarantine bit tracking, the web sites. Several server side dynamic and static taint-
JavaScript internal representation of the divés and vari- tracking mechanisms [44, 19, 38] have been developed in
ablesdi vnane, Name and St at us are marked quaran- the past. Languages such as PHP, that are most popularly
tined. According to the terminal confinement policy, during used, have been augmented to dynamically track untrusted
parsing our mechanism detects that the vari@tlat us data with moderate performance overheads, both using au-
contains a delimiter non-terminagl *. It coerces the lexeme tomatic source code transformation [44] as well as manual
“, " to be treated a terminal character rather than interpret-source code upgrades for PHPTaint [38]. Automatic mech-
ing it as a separator non-terminal, thus nullifying theekta anisms that provide taint information could be directlydise

to selectively place delimiters at the server output.
We have experimented with PHPTaint [38], an imple-
. mentation of taint-tracking in the PHP 5.2.5 engine, to au-
5 Architecture tomatically augment the minimal serialization primitifes
all tainted data seen in the output of the web server. We en-

In this section, we discuss the details of a client/server ar able dynamic taint tracking of GET/POST request parame-
chitecture that embodies our approach. We first outline theters and database pulls. We disable taint declassificafion o
goals we aim to achieve in our architecture and then outlinedata when sanitized by PHP sanitization functions (since we

how we realize the different steps proposed in Section 4. Wish to treat even sanitized data as potentially malicious)
All output tainted data are augmented with surrounding de-

) limiters for minimal serialization. Our modifications shew
5.1 Architecture Goals that automatic serialization is possible using off-thelsh
tools.

We propose a client-server architecture to realize DSI. FOr more complex web sites that use a multi-component
We outline the following goals for web sites employing architecture, cross-component dynamic taint analysis may
DSI enforcement, which are _mo§t important to make our 6Web browsers that are not DSI-compliant are referred tmas-
approach amenable for adoption in practice. compliant

2. Low false positives DSI-compliant browsers should
raise very few or no false positives. A client-server ar-
chitecture, such as ours, reduces the likelihood of false
positives that arise from a purely-client side implemen-
tation of DSI (see Section 7).

be needed. This is an active area of research and auto-
matic support for minimal serialization at the server side
would readily benefit from advances in this area. Recent
techniques proposed for program analysis to identify taint
style vulnerabilities [22, 16] could help identify tainingi
points in larger web application, where manual identifica-
tion is hard. Similarly, Nanda et al. have recently shown
cross-component dynamic taint tracking for the LAMP ar-
chitecture is possible [25].

Communicating valid suffixes. In our design it is suffi-
cient to communicatéCy, n} in a secure way, wherg; is

the random number generator seed to useraisdche num-

ber of invocations to generate the getof valid delimiter
suffixes. Our scheme communicates these as two special
HTML tag attributes, §eed andsuf fi xset | engt h),

as part of the HTMLhead tag of the web page. We assume
that the server and the browser use the same implementation
of the psuedo-random number generator. Once read by the
browser, it generates this set for the entire lifetime of the
page and does not recompute it even if the attacker corrupts
the value of the special attributes dynamically. We have ver
ified that this scheme is backwards compatible with HTML
handling in current browsers, i.e, these special attribate
completely ignored for rendering in current browgers

Choice of serialization alphabet for encoding delimiters.
We discuss two schemes for encoding delimiters.

e \We propose use of byte values from the Unicode Char-

acter Database [37] which are rendered as Whitespacep

on the major browsers independent of the selected
character set used for web page decoding. Our ratio-
nale for using whitespace characters is its uniformity
across all common character sets, and the fact that thisfi
does not hinder parsing of HTML or script in most

relevant contexts (including between tags, between at-
tributes and values and strings). In certain exceptional

It should be clear that a compliant browser can eas-
ily distinguish pages served from a non-compliant web
server to a randomization compliant web server—it
looks at theseed attribute in the<head> element

of the web page. When a compliant browser views a
non-compliant page, it simply treats the delimiter en-
coding bytes as whitespace as per current semantics,
as this is a non-compliant web page. When a compli-
ant browser renders a compliant web page, it treats any
found delimiter characters as valid iff they have valid
suffixes, or else it discards the sequence of characters
as whitespace (these may occur by chance in the origi-
nal web page, or may be attacker’s spoofing attempts).
Having initialized the enclosed characters as untrusted
in its internal representation, it strips these whitespace
characters away. Thus, the scheme is secure whether
the page is DSI-compliant or not.

e Another approach is to use special delimiter tags,

<qt ag>, with an attributecheck=suf f i x, as well.
Qtags have a lesser impact on readability of code than
the above scheme. Qtags have the same encoding
mechanism asj ai | > tags proposed informally [7].
We verified that it renders safely in today’s popular
browsers in most contexts, but is unsuitable to be used
in certain contexts such as within strings. Another is-
sue with this scheme is that XHTML does not allow
attributes in end tags, and so they don'’t render well in
XHTML pages on non-compliant browsers, and may
be difficult to accepted as a standard.

olicy Specification. Our policies confine untrusted data
only. Currently, we support per-page policies that are en-
forced for the entire web page, rather than varying region-
based policies. By default, we enforce the terminal con-
nement policy which is a default fail-close policy. In most
cases, this policy is sufficient for several web sites to de-
fend against reflected XSS attacks. A more flexible policy
that is useful is to allow certain HTML syntactic constructs

contexts where these may hinder semantics of ParsiNg,i, inline untrusted data, such as restricted set of HTML

these errors would show up in pre-deployment testing
and can easily be fixed. There are 20 such character,
values which can be used to encode start and end de-

limiter symbols. All of the characters, as shown in ap- H

pendix A, render as whitespace on cuurent browsers.
To encode the delimiters’ random suffixes we could

use the remaining 18 (2 are used for delimiters them-
selves) as symbols. Thus, each symbol can encode 1
possible values, so a suffix— symbols long, should

be sufficient to yield an entropy of x (Ig(18)) or

(¢ x 4.16) bits.

7“current browsers” refers to: Safari, Firefox 2/3, Interf#xplorer
6/7/8, Google Chrome, Opera 9.6 and Konqueror 3.5.9 in thpspa

markup in user blog posts. We support a whitelist of syn-
tactic HTML elements as part of a configurable policy.

We allow configurable specification of whitelisted
TML construct names through al | owuser tag at-
tribute for HTML <net a> tag which can have a comma-
separated list of allowed tags. For instance, the following

pecification would allow untrusted nodes corresponding to
he paragraph, boldface, line break elements, the atribut
i d (in all elements) and the anchor element with optional
hr ef attribute (only with anchor element) in parse tree to
not be flagged as an exploit. The following markup renders
properly in non-compliant browsers since unknown markup
is discarded in the popular browsers.

<neta all owuser="p, b, br, @d, a@ref’ > and can be configured to indicate which sources of data are

For security, untrusted data is disallowed to define marked tainted in the server. We made minor modifications
al | owuser tag without exception. Policy development to PHPTaint to integrate in our framework. By default when
and standardization of default policies are important prob untrusted data is processed by a built-in sanitization rou-
lems which involve a detail study of common elements that tine, PHPTaint endorses the data as safedmuihissifie®r
are safe to allow on most web sites. However, we considerclears) the taint; we changed this behavior to not declassif
this beyond the scope of this paper, but deem worthy of fu- taint in such situations even though the data is sanitized.
ture work. Whenever data is echoed to the output we interpose in PH-
PTaint and surround tainted data with special delimites tag
with randomized values at runtime. For serialization, we
used the unicode charactds2029 as a start-delimiter.
Immediately following the start-delimiter arerandomly

We discuss details of our prototype implementation of chosen unicode whitespace characterskéyefrom the re-
a PLI enabled web browser and a PLI enabled web Servelmaining 18 unicode characters. We have chosen 10,
first. Next, we demonstrate an example forum application though this is easily configurable in our implementation.

that was deployed on this framework requiring no ChangesFollowing the key is the end-delimitéi+2028 to signify
to application code. Finally, we outline the implementatio the key has been fully read.

of a web proxy server used for evaluation in section 7.

6 Implementation

Example application. Figure 9(a) shows a vulnerable
DSI compliant browser. We have implemented a proof- web forum application, phpBB version 2.0.18, running on
of-concept PLI enabled web browser by modifying Kon- a vanilla Apache 1.3.41 web server with PHP 5.2.5 when
queror 3.5.9. Before each HTML parsing operation, the viewed with a vanilla Konqueror 3.5.9 with no DSI enforce-
HTML parsing engine identifies special delimiter tags. This ment. The attacker posts a post containing a script tag which
step is performed before any character decoding is per-results in a cookie alert. To prevent such attacks, we de-
formed, and our choice of unicode alphabet for delimiters ployed the phpBB forum application on our DSI-compliant
ensures that we deal with all character set encodings. Theyeb server next. We requiratb changes to the web ap-
modified browser simulates a pushdown automaton duringplication code to deploy it on our prototype DSI-compliant
parsing to keep track of delimiter symbols for matching. web server. Figure 9(b) shows how the attack is nullified
Delimited characters are initialized as quarantined, tvhic by our client-server DSI enforcement prototype which em-
is represented by enhancing the type declaration for theploys PHPTaint to automatically mark forum data (derived
character class in Konqueror with a quarantine bit. Parsefrom the database) as tainted, enhances it with minimal se-
tree nodes that are derived from quarantined characters ar@alization which enables a DSI-compliant version of Kon-
marked quarantined as well. Before any quarantined inter-queror 3.5.9 to nullify the attack.
nal node is updated to the document’s parse tree, the parser
invokes the policy checker which ensures that the parse tre

update is pe_rmitted by the P olicy. Any interna_l node_s that real-world web sites, we could not use our prototype taint-
are not permitted by the policy are collapsed with their sub- enabled PHP based server because we do not have ac-

tree to be treated as a leaf node and rendered as a stiingaqq 15 server code of the vulnerable web sites. To over-

literal. come this practical limitation, we implemented a clierdesi

we mocﬁﬂed the Jangcrlpt Int'erpre'zter n Konqueror proxy server that approximately mimics the server-side op-
3.5.9 to facilitate automatic quarantine bit tracking anetp o, .0

vented tainted access through the JavaScript-DOM inter- When the browser visits a vulnerable web site, the proxy

face. The modifications required were a substantial imple—Web server records all GET/POST data sent by the browser,

[pentalt |c;n efflortb_coTpared tottr:.e HTML parier mc()jd[|f|c?- and maintains state about the HTTP request parameters
lons. Internai object representations were enhanceote st - gony — The proxy essentially perforroentent based taint-

the quarantine bits and handlers for each JavaScript operal-ng across data sent to the real server and the received re-

tion had to be altered to propagate the quarantine bits. Th.esponse, to approximate what the server would do in the full

implemented policy checks ensure that quarantined data 'Sdeployment of the client-server architecture
only interpreted as a terminal in the JavaScript language. The web server proxy performs a lexical string match

between the sent parameter data and the data it receives
DSI compliant server. We employed PHPTaint [38] inthe HTTP response. For all data in the HTTP response
which is an existing implementation dynamic taint track- that matches, the proxy performs minimal serialization (ap
ing in the PHP interpreter. It enables taint variables in PHP proximating the operations of a DSI-compliant server)it.e,

Client-side Proxy Server. For evaluation of the 5,328

0606 X! VNC: kong's X desktop (zchor:2) [aXaXa) X YNC: kongs X desktop (zchorid)

o o Vi G i o3

Location Edit View Go Bookmarks Iools Settings Windom Help

QL0008 =X KN a QLU0 0G =X AN a i

3 Location: | 4 httpiffreyahomsl

Location Edt Mien Go Bookmarks Jools Settings Window Help

| BB Location: [, tpifreya h hpt=3 7

A _little_ text 10 clescrioe your forum
" yourdomain.com Forum
yOUI’dOmaIn_COm FOFAG & Search M Memberlst 11 Usergroups Fo Resister
A _itle_ text 1o descrios your forum

Fi Profle |+ Login 1o check your private messages | Login
yourdomain.com Forum

FOFAQ i Search M b 11 Userorouss i Regiter
P Frofle | Log n to check your private messages | Login attack

E) freye homelinus.org - Jav aScript - Konguerar. -x

e Postuen Replyto yourdomain com Forum hadex -3 Test Forum 1
L [
7Bs% AL

yacin

iewt next ic i
e Postedt: Fri Dec 12,2008 6:47 pm Past sublect: attack Reply with
I S
AR i Joingd: 12 Dec 2008 <seripte alert{document cookie)¢ fscripts
Site Admin Posted: Fri Dec 12, 2006 647 pm Post sublect: attack Rep‘y with o i i) o
3
Joingd: 12 Dec 2008 o) .
Fosts: 7 & Bagkto top \iew User's Send private Send
Disiay posts from prsvios:| A Fosts | = || Oiest Fist | =[G al
Pazt new Renly b Al times are GMT =
[one]] o UG roudom [Fravabe 1 [: DAl [yourorman 4| » | 3006)

Figure 9: (a) A sample web forum application running on a etdible version of phpBB 2.0.18, victimized by stored XSS

attack as it shows with vanilla Konqueror browser (b) Attaekitralized by our proof-of-concept prototype clientveeDSI
enforcement.

lexically adds randomized delimiters to demarcate matched] Attack Category\ # Attacks\ # Prevented \
data in the response page as untrusted, before forwarding it Reflected XSS 5,328 | 5,243 (98.4%)
to the PLI enabled browser. Stored XSS 25 25 (100%)
7 Evaluation Figure 10: Effectiveness of DSI enforcement against both
reflected XSS attacks [43] as well as stored XSS attack vec-
To evaluate the effectiveness and overhead of PLI andtors [12].

PLI enabled browsers we conducted experiments with two
configurations. The first configuration consists of running based policy.
our prototype PLI enabled browser and a server running
PHPTaint with the phpBB appllcatlon. ThIS configuration 7.2 Experimental Results and Analysis
was used to evaluate effectiveness against stored XSS at-
tacks. The second configuration ran our PLI enabled web _
browser directing all HTTP requests to the proxy web server 7.2.1 Attack Detection
described in section 7. The second configuration was usetReflected XSS. We evaluated the effectiveness against all
to study real-world reflected attacks, since we did not have rgal-world web sites with known vulnerabilities, archived
access to the vulnerable web server code. at the XSSed [43] web site as of 25th July 2008, which re-
sulted in successful attacks using Konqueror 3.5.9. In this
7.1 Experimental Setup category, there were 5,328 web sites which constituted our
final test dataset. Our DSl-enforcement using the proxy
Our experiments were performed on two systems—oneweb server and DSI compliant browser nullifig®l.4% of
ran a Mac OS X 10.4.11 on a 2.0 GHz Intel processor with these attacks as shown in Figure 10. Upon further analy-
2GB of memory, and the other runs Gentoo GNU/Linux sis of the false negatives in this experiment, we discovered
2.6.17.6 on a 3.4 GHz Intel Xeon processor with 2 GB that 46 of the remaining cases were missed because the real
of memory. The first machine ran an Apache 1.3.41 web web server modified the attack input before embedding it
server with PHP 5.2.5 engine and MySQL back-end, while on the web page—our web server proxy failed to recognize
the second ran the DSI compliant Konqueror. The two ma- this server-side modification as it performs a simple string
chines were connected by a 100 Mbps switch. We config- matching between data sent by the browser and the received
ured our prototype PLI enabled browser and server to applyHTTP response. We believe that in full-deployment these
the default policy of terminal confinement to all web re- would be captured with server explicitly demarcating un-
quests unless the server overrides with another whitadjsti trusted data. We could not determine the cause of missing

the remaining 39, as the sent input was not discernible in
the HTTP response web page. We showed that the policy
of terminal confinement, if supported in web servers as the
default, is sufficient to prevent a large majority of refletcte
XSS attacks.

10KB

20KB

Document Size

Stored XSS. We setup a vulnerable version of phpBB 40KB
web blog application (version 2.0.18) on our DSI enabled
web server, and injected 30 benign text and HTML based o 17.5 35.0 52.5 70.0
posts, and all of the stored attack vectors taken from XSS CPU Usage

cheat sheet [12] that worked in Kongqueror 3.5.9. Of the 92 B Vvanilla PHP B PHPTaint

attack vectors outlined therein, only 25 worked in a vanilla

Konqueror 3.5.9 browser. We configured the policy to allow Figure 12: Increase in CPU overhead averaged over 5 runs

only<p>, and <a>HTMLtagsandandiref at- for different page sizes for a DSI-enabled web server using
tributes. No modifications were made to the phpBB appli- pHPTaint [38].

cation code. Our prototype nullified all 25 XSS attacks.

by the authors of PHPTaint [38]. Figure 11 shows a com-
parison between the vanilla web server and a DSI-compliant

Browser Performance. To measure the browser perfor- Web server (both running phpBB) in terms of the percentage
mance overhead, we compared the page load times of ouPf HTTP requests completed within a certain response time
modified version of Konqueror 3.5.9 and the vanilla version frame. For 10 concurrent requests, the two servers perform
of Konqueror 3.5.9. We evaluated against the test bench-nearly very similar, wheres for 30 concurrent requests the
mark internally used at Mozilla for browser performance server with PHPTaint shows some degradation for complet-
testing, consisting of over 350 web pages of popular webing more thard5% of the requests.
pages with common features including HTML, JavaScript,
CSS, and images[24]. No data on this web pages was; » 3 Fglse Positives
marked untrusted. We measured a performance overhead
of 1.8% averaged over 5 runs of the benchmark. We observed a fewer false positives rate in our stored XSS
We also measured the performance of loading all the attacks experiment than in the reflected XSS experiment.
pages from the XSSed dataset consisting of 5,328, with un-In the stored experiment, we did not observe any false
trusted data marked with serialization delimiters. We ob- positives. In the reflected XSS experiment, we observed
served a similar overhead @f85% when processing web false positives when we deliberately provided inputs that
pages with tainted data. matched existing page content. For the latter experiment,
Web page (or code) size increase often translates to inwe manually browsed the Global Top 500 websites listed
creased corporate bandwidth consumption, and is importan©n Alexa [2] browsing with deliberate intent to raise false
to characterize in a cost analysis. For the XSSed dataget, oupositives. For each website, we visited an average of 3
instrumentation with delimiters of length= 10 increased ~ Second-level pages by creating accounts, logging in with

the page size by less thanl% on average for all the web ~Mmalicious inputs, performing searches for dangerous key-
pages with marked untrusted data. words, as well as clicking on links on the web pages to sim-

ulate normal user activity.

With our default policy, as expected, we were able to in-
Server Performance. We measured the CPU overhead ,ce false positives on 5 of the web pages. For instance, a

for the phpBB applic_:ation running ona DSl complian_t web gearch query for the stringet i t | e>” on Slashddt caused
server with PHPTaint enabled. This was done vath penign data to be returned page to be marked quarantined.
(ApacheBench), a tool provided with Apache to measure e confirmed that these arise because our client-side proxy
performance [1]. Itis configured to generate dynamic fo- gerver marks trusted code as untrusted which subsequently
rum web pages of sizes varying from 10 KB t0 40 KB. I aises alarms when interpreted as code by the browser. In
our experiment, 64,000 requests were issued to the servepyinciple, we expect that full-implementation with a taint

with 16 concurrent requests. As shown in Figure 12, we ayare server side component would eliminate these false
observed average CPU overheads.af%, 2.9% and3.1% positives inherent in the client-side proxy server approxi
for pages of 10 KB, 20 KB, and 40 KB in size respectively.

This is consistent with the performance overheads reported 8http://slashdot.org

7.2.2 Performance

7
95% 95% / Vad
85% 85%
75% N 75% N
—+ PHPTaint —+ PHPTaint
S —& No PHPTaint S [—# No PHPTaint
P -
])
65% 65%
] O
> 55% > 55%
45% 45%
0.0 50.0 100.0 150.0 200.0 250.0 4] 50 100 150
Time (ms) Time (ms)

Figure 11: Percentage of responses completed within aicéirtgeframe. 1000 requests on a 10 KB document with (a) 10
concurrent requests and (b) 30 concurrent requests.

mation. e Keyword PolymorphismTo evade keyword filters, at-
We also report that even with the client-side proxy server tackers may find different syntactic constructs to by-
approximation, we dichot raise false positives in certain pass these. For instance, in the Samy worm [32],

cases where the |IE 8 Beta XSS filter did. For instance, we to inject a restricted keywordnner HTM., the at-
do not raise false positives when searching for the string tacker used a semantically equivalent constreetal
“javascript:” on Google search engine. This is because our ("inner’+ HTM.)"

DSl enforcement is parser context aware—though all occur-

rences of “javascript:” are marked untrusted in the HTTP ¢ Multiple Injection Vectors Attacker can inject non-
response page, our browser did not raise an alert as un- Script based elements.

trusted data was not interpreted as code.) .]] B
e Breaking static structural integrity To specifically

. . Lo evade confinement based schemes, attacker can break
8 Comparison with Existing XSS Defenses out of the static confinement regions on the web page.

We outline the criteria for analytically comparing differ- ~ ® Breaking dynamic structural integrity Attacks may
ent XSS defenses first, and then discuss each of the existing ~ target breaking the structure of the dynamically exe-
defenses next providing a summary of the comparison in cuting client-side code, as discussed in Section 2.
Figure 13.
Defense against each of the above adaptive attack cate-
8.1 Comparison Criteria gories serves a point of comparing existing defenses. In ad-
dition to these, we analytically compare the potential@ffe

tiveness of techniques to defend against stored XSS attacks

f To ponc)r(estglyg s;;mmatr |zer]the strengths and twegk]?esdse%e also characterize whether a defense mechanism enables
ot varlous elense techniques, we present a detentelpq,ip e server-side specification of policies or not. Tlss i

centric taxonomy of adaptive attacks to characterize theimportant because fixation of policies often results indals

ability of current defenses against current attacks asagell positives, especially for content-rich untrusted dataictvh

attacks in the future t_hat try to evade the defenses. Acmpuv can be a serious impediment to the eventual deployability
attackers can potentially target at least the avenuesedtli of an approach

below.
e Browser inconsistencylnconsistency in assumptions 8.2 Existing Techniques
made by the server and client lead to various attacks as
outlined in the Section 1. Figure 13 shows the comparative capabilities of exist-
ing defense techniques at a glance on the basis of criteria
e Lexical Polymorphism To evade lexical sanitization, outlined earlier in this section. We describe current XSS
attackers may find variants in lexical entities. defenses and discuss some of their weaknesses.

Techniques [|BI[P MV [SDSI[DDSI|ST]| FP|]
Purely Server-side [l l l l l l ‘

Input Validation & Sanitization v v v
Server Output browser-independent policies (using taint-tracking) v v v v |V
Server Output Validation browser-based policies (XSS-GUARD [5]) v v v v v | v

[Purely Browser Side [[] [[[[|
Sensitive Information Flow Tracking v | v v v v
Global Script Disabling v |V v v v
Personal Firewalls with URL Blocking v |V v
GET/POST Request content based URL blocking v |V v v

[Browser-Server Cooperation Based [[] [[[[|
Script Content Whitelisting (BEEP) v |V v vV |V
Region Confinement Script Disabling (BEEP) v IV v v |V
PLI with Server-specified policy enforcement v | v v v v v |V
BI Not susceptible to browser-server inconsistency bugs
P Designed to easily defeats lexical and keyword polymorpluased attacks
MV Designed for comprehensiveness against multiple vectwisaétack goals (Flash objects as scripting vectors,

i f r anes insertion for phishing, click fraud).

SDSI Designed to easily defeat evasion attacks that bre#k EiS| (attacks such as 1,2 in Section 2).
D DSl Designed to easily defeat evasion attacks that breairdic DSI (attacks such as 3,4 in Section 2).
ST Can potentially deal with stored XSS attacks.
FP Allows flexible server configurable policies (importanetiminate false positives for content-rich untrusted data)

Figure 13: Various XSS Mitigation Techniques Capabilittésa glance. Columns 2 - 6 represent security properties, and
columns 7-9 represent other practical issuesv’Adenotes that the mechanism demonstrates the property.

8.2.1 Purely server-side defenses Browser-based Policy Checking at Output.To mitigate

the lack of client-side language semantics at the server
Input Validation and sanitization. Popular server side output interface, XSS-GUARD [5] employs a complete
languages such as PHP provide standard sanitization funcbrowser implementation on the server output. In princi-
tions, such ast nl speci al chars. However, the code ple, this enables XSS-GUARD to deal with both static and
logic to check validity is often concentrated at the inputin dynamic DSI attacks, at the expense of significant perfor-
terface of the server, and also distributed based on the conmance overheads. However, this scheme conceptually still
text where untrusted data gets embedded. This mechanisrguffers from browser inconsistency bugs as a different tar-
serves as a first line of defense in practice, but is not ro-get browser may be used by the client than the one checked
bust as it places excessive burden on the web developer foRgainst. Our technique enables the primary benefits of XSS-
its correctness. Prevalence of XSS attacks today shows tha6UARD without high performance overheads and making
these mechanisms fail to safeguard against both static andhe policy enforcement consistent with the client browser.
dynamic DSI attacks.

8.2.2 Purely client-side defenses

Sensitive information flow tracking. Vogt et. al. propose
Browser-independent Policy Checking at OutputTaint- sensitive information flow tracking [39] in the browser to
tracking [44, 25, 27, 30] on the server-side aims to central- identify spurious cross—.domain sengitive informatiomsa
ize sanitization checks at the output interface with the usefer as a XSS attack. This approach is symptom targeted and
of taint metadata. Since the context of where untrusted datdimited in its goal, and hence does not lend easily to other
are being embedded can be arbitrary, the policy checking@ttack targets outlined in the introduction. It also regsir
becomes complicated especially when dealing with attacksmoderately high false positives in normal usage. This stems
that affect dynamic DSI. The primary reason is the lack of from the lack of specification of the intended policy by the
semantics of client side behavior in the policy checking en- Web server.
gine at the interface. Another problem with this approach
is that the policy checks are not specific to the browser thatScript Injection Blocking. Several techniques are focused
the client uses and can be susceptible to browser-server inen stopping script injection attacks. For instance, the-Fir
consistency bugs. fox NoScript extension block scripts globally on web sites

the user does not explicitly state as trusted. Many web sitesexecutes, but does not directly extend to attacks that deal
do not render well with this extension turned on, and this re- with the safety of data usage. Our technique enforces a dy-
quires user intervention. Once allowed, all scripts (idelu namic parser-level confinement to ensure that data is not
ing those from attacks) can run in the browser. interpreted as code in client-side scripting code.

Personal Firewalls with URL blocking. Noxes [18] is @ Rregion-based Script Disabling. BEEP outlined a tech-
clleqt-3|de rule based proxy to Q|§allow users V|S|t|ng_po- nique to define regions of the web page that can not con-
tentially unsafe URL using heuristics. First, such solsio 4in script code, which allows finer-grained region-based
are not designed to distinguish trusted data generatedeby th script disabling than those possible by already supported
server from user-generated data. As a result, they can havgyqyser mechanisms [28]. First, their isolation mechanism
high false negatives (Noxes treats static links in the Pageysing JavaScript string quoting to prevent static DSI &tac
as safe) and have false positives [18] due to lack of server-pgainst itself. As discussed in Section 4.1, this mechanism
side configuration of policy to be enforced. Second, they ¢4 he somewhat tricky to enforce for content-rich untuiste
are largely targeted towards sensitive information stgali ¢4 which allows HTML entities in untrusted data. Second,
attacks. this mechanism does not deal with dynamic DSI attacks by
itself, because region based script blocking can not be ap-
GET/POST Request content based URL blockingSev- plied to script code regions.
eral proposals aim to augment the web browser (or a local
proxy) to block URLs that contain GET/POST data with
known attack characters or patterns. The most recent is a
implementation of this is the XSS filter in Internet Explorer
(IE) 8 Beta [14]. First, from our limited experiments with DSl enforcement using a client-server architecture offers
the current implementation, this approach does not seema strong basis for XSS defense in principle. However, we
to detect XSS attacks based on the parsing context. Thigdiscuss some practical concerns for a full deployment sf thi
raises numerous false positives, one instance of which wescheme. First, our approach requires both client and server
describe in Section 7. Second, their design does not allowparticipation in implementing our enhancements. Though
configurable server specified policies, which may disallow we can minimize the developer effort for such changes, our
content-rich untrusted data. In general, fixed policies on technique requires both web servers and clients to collec-
the client-side with no server-side specification eithésera tively upgrade to enable any protection.
false positives or tend to be too specific to certain attack ve Second, a DSI-compliant browser requires quarantine bit
tors (thus resulting in false negatives). Finally, our jpnél tracking across operations of several languages. If imple-
nary investigation reveals that they currently do not défen mented for JavaScript, this would prevent attacks vectors
against integrity attacks, as they allow certain non-$crip using JavaScript, but not against attacks that using other
based attack vectors (such as forms) to be injected in thdanguages. Uniform cross-component quarantine bit track-
web page. We believe this is an interesting avenue and ang is possible in practice, but it would require vendors of
detailed study of the IE 8 mechanism would be worthwhile multiple popular third party web plugins (Flash, Flex, Sil-
to understand capabilities of such defenses completely. verlight, and so on) to cooperate and enhance their language
interpreters or parsers. Automatic techniques to fatdlita
8.2.3 Client-server cooperative defenses such propagation and cross-component dynamic quarantine
bit propagation at the binary level for DSI enforcement are
This paradigm for XSS defense has emerged to deal withinteresting research directions for future work that map he
the inefficiencies of purely client and server based mecha-gddress this concern.
nisms. Jim et al. have recently proposed two approaches Thjrq, it is important to account for end-user usability.
in BEEP [15]—whitelisting legitimate scripts and defining or techniques aim to minimize the impact of rendering
regions that should not contain any scripting code. DSI compliant web pages on existing web browsers for ease
of transition to DSI compliance; however, investigation of
Whitelisting of legitimate scripts. First, they target only ~ schemes that integrate DSI seamlessly while ensuring stati
script-injection based vectors and hence are not designed t DSI are important. Recent work but Louw et. al. formu-
comprehensively defend against other XSS vectors. Secdates the problem of isolation of untrusted content in stati
ond, this mechanism does not thwart attacks (such as attackd TML markup [21]; they present a comparison of prevalent
4 in Figure 3) violating dynamic DSI that target unsafe us- isolation mechanisms in HTML and show that there is no
age of data by client-side code. Their mechanism checkssingle silver bullet. In contrast, we outline techniqueatth
the integrity and authenticity of the script code before it address static as well as dynamic isolation of untrusteal dat

r9 Discussion

We hope that our work provides additional insight for devel- isolate entities from different domains. Browser-sidatai
opment of newer language primitives for isolation. Finally tracking is also used to fortify domain isolation [8], as
false positives are another concern for usability. We did no well as tightening the sharing mechanisms such as iframe
encounter false positives in our preliminary evaluatiod an communication[4] and navigation. These address a class
testing, but this not sufficient to rule out its possibilitya of XSS attacks that arise out of purely browser-side bugs

full-deployment of this scheme. or weak enforcement policies in isolating web content
across different web page, whereas in this paper, we have
10 Related Work analyzed the class of reflected and stored XSS attacks

only. MashupOS[41] discussed isolation and communica-

XSS defense techniques can be largely classified into detion primitives for web applications to specify trust asso-
tection techniques and prevention techniques_ The |atterCiated with external code available from untrusted source.
has been directly discussed in Section 8; in this section, weOur work introduces primitives for isolation and confine-
discuss detection techniques and other work that relates tgnent of inline untrusted data that is embedded in the web
ours. page.

XSS detection techniques focus on identifying holes in ~ Finally, the idea of parser-level isolation is a pervasivel
web application code that could result in vulnerabilities. used mechanism. Prepared statements [9] in SQL are built
Most of the vulnerability detection techniques have focuse On this principle, and Su et al. demonstrated a parser-level

on server-side application code. We classify them based orfefense technique against SQL injection attacks[35]. As we
the nature of the analysis, below. show, for today’s web applications the problem is signif-

i)))) . icantly different than dealing with SQL, as untrusted data
» Static and Quasi-static techniqueStatic analysis [13, g hrocessed dynamically both on the client browser and
16, 23] and model checking techniques [22] aim 10 i, the web server. The approach of using randomization
identify cases where the web application code fails t0 1o .hniques has been proposed for SQL injection attacks [6],
sanitize the Input before_output. MOSt static analy- ool hijacking in binary code [17], and even in infor-
SIS tools are equipped with the po!lcy that once data mal proposals for confinement in HTML using ai | >
is passed through a custom sanity check, such asgq (7, 21]. Our work offers a comprehensive framework
ht mpspeci al char's PHP function, then the input yhat improves on the security properties<ifai | > ele-

is safe. Balzarotti et al. [3] show that often XSS at- ent for static DSI (as explained in Section 4), and provides
tacks are possible even if the develop performs certain dynamic integrity as well.

sanitization on input data due to deficiencies in saniti-
zation routines. They also describe a combined static

and dynamic analysis to find such security bugs. 11 Conclusion

e Server-side dynamic detectigachniques have been We proposed a new approach that models XSS as a priv-
proposed to deal with the distributed nature of the jlege escalation vulnerability, as opposed to a sanitizati
server side checks. Taint-tracking [44, 5, 27, 30] on the problem. It employs parser-level isolation for confinement
server-side aims to centralize sanitization checks at thepf user-generated data through out the lifetime of the web
output interface with the use of taint metadata. These application. We showed this scheme is practically possible
have relied on the assumption that server side processin an architecture that is backwards compatible with curren
ing is consistent with client side rendering, which is browsers. Our empirical evaluation over 5,328 real-world
a significant design difference. These can be used asyulnerable web sites shows that our default policy thwarts
prevention techniques as well. Our work extends the over 98% of the attacks, and we explained how flexible
foundation of taint-tracking to client-side tracking to server-side policies could be used in conjunction, to gtevi
eliminate difficulties of server-browser inconsistencies robust XSS defense with no false positives.
and to safeguard client-side code as well. Some of the
practical challenges that we share with previous work 12 Acknowledgments
on taint-tracking are related to tracking taint correctly
through multiple components of the web server plat-
form efficiently. Cross-component taint tracking [25]
and efficient designs of taint-tracking [33, 31, 19] for
server-side mitigation are an active area of research
which our architecture would readily benefit from.

We are thankful to Adam Barth, Chris Karloff and David
Wagner for helpful feedback and insightful discussions dur
ing our design. We also thank Robert O’Callahan for pro-
viding us with the Mozilla Firefox test suite and Nikhil
Swamy for discussions during writing. We are grateful

Several other works have targeted fortification of web to our anonymous reviewers for useful feedback on ex-
browser’s same-origin policy enforcement mechanisms to periments and suggestions for improving our work. This

work is supported by the NSF TRUST grant number CCF- [15] T. Jim, N. Swamy, and M. Hicks. Beep: Browser-enforced
0424422, NSF TC grant number 0311808, NSF CAREER

grant number 0448452, and the NSF Detection grant num-

ber 0627511.

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

ab. Apache HTTP server benchmarking tool.
http://httpd. apache. org/ docs/ 2. 0/

prograns/ ab. htn .

alexa.com. Alexa top 500 sites. htt p:

[/ ww. al exa. com site/ds/top_sites?ts_
node=gl obal & ang=none, 2008.

D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna. Saner: Composing
Static and Dynamic Analysis to Validate Sanitization in Web
Applications. InProceedings of the IEEE Symposium on Se-
curity and Privacy Oakland, CA, May 2008.

A. Barth, C. Jackson, and J. C. Mitchell. Securing frame
communication in browsers. IRroceedings of the 17th
USENIX Security Symposium (USENIX Security 2008)
2008.

P. Bisht and V. N. Venkatakrishnan. XSS-GUARD: precise
dynamic prevention of cross-site scripting attacksDétec-
tion of Intrusions and Malware, and Vulnerability Assess-
ment 2008.

S. W. Boyd and A. D. Keromytis. Sqlrand: Preventing sql
injection attacks. IrProceedings of the 2nd Applied Cryp-
tography and Network Security (ACNS) Conferemuages
292-302, 2004.

C. M. C. Brendan Eich. Javascript: Mobility & ubig-
uity. Presentation. http://kat hrin. dagst uhl .
de/files/Materials/07/07091/07091.

Ei chBr endan. Sl i des. pdf.

S. Chen, D. Ross, and Y.-M. Wang. An analysis of browser
domain-isolation bugs and a light-weight transparent de-
fense mechanism. IRroceedings of the 14th ACM con-
ference on Computer and communications secuggges
2-11, New York, NY, USA, 2007. ACM.

H. Fisk. Prepared statements. http://dev.
nysql . conf tech-resources/articl es/ 4.

1/ prepar ed- st at enent s. ht m , 2004.

M. V. Gundy and H. Chen. Noncespaces: using randomiza-
tion to enforce information flow tracking and thwart cross-
site scripting attacks16th Annual Network & Distributed
System Security Symposit2009.

R. Hansen. Clickjacking. http:// ha. ckers. org/

bl og/ 20081007/ cl i ckj acki ng- detai | s/.

R. Hansen. Xss cheat sheéit t p: / / ha. ckers. or g/
xss. htm .

Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo. Se-
curing web application code by static analysis and runtime
protection.DSN 2004.

IE 8 Blog: Security Vulnerability Research
& Defense. IE 8 XSS filter architecture
and implementation. http://bl ogs.

technet . conl swi / archi ve/ 2008/ 08/ 18/

ie-8-xss-filter-architecture-inplenmentation.

aspx, 2008.

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]
(29]

(30]

(31]

embedded policies.16th International World World Web
Conference2007.

N. Jovanovic, C. Kiagel, and E. Kirda. Pixy: A static anal-
ysis tool for detecting web application vulnerabilities (short
paper). INEEE Symposium on Security and Priva2906.

G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
code-injection attacks with instruction-set randomization. In
Proceedings of the 10th ACM conference on Computer and
communications securit003.

E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes:
a client-side solution for mitigating cross-site scripting at-
tacks. InProceedings of the 2006 ACM symposium on Ap-
plied computing2006.

L. C. Lam and T. Chiueh. A general dynamic information
flow tracking framework for security applications. Rro-
ceedings of the 22nd Annual Computer Security Applica-
tions Conference on Annual Computer Security Applications
Conference2006.

J. Lavoie. Myspace.com - intricate script injection.
www.derkeiler.com/pdf/Mailing-Lists/securityfocus/vuln-
dev/2006-04/msg00016.pdf.

M. T. Louw, P. Bisht, and V. Venkatakrishnan. Analysis of
hypertext isolation techniques for XSS preventiowork-
shop on Web 2.0 Security and Privacy (W23#0p8.

M. Martin and M. S. Lam. Automatic generation of XSS and
SQL injection attacks with goal-directed model checking. In
17th USENIX Security Symposiu2908.

M. C. Martin, V. B. Livshits, and M. S. Lam. Finding appli-
cation errors and security flaws using PQL: a program query
language. IrObject-Oriented Programming, Systems, Lan-
guages, and Application2005.

Mozilla Foundation. Tp2 pageloader framecycle test.
http://nxr.nozilla.org/ nozillalsource/

t ool s/ per f or mance/ pagel oad/ .

S. Nanda, L.-C. Lam, and T. Chiueh. Dynamic multi-
process information flow tracking for web application se-
curity. In Proceedings of the 8th ACM/IFIP/USENIX inter-
national conference on Middlewar2007.

Netcraft. Banks hit by cross-frame phishing attacks.
http://news. netcraft. confarchi ves/ 2005/

03/ 17/ banks_hit _by_crossfranme_phi shing_
attacks. ht nl , 2005.

A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically hardening web applications using
precise tainting20th IFIP International Information Secu-
rity Conference2005.

NoScript. Noscriptht t p: // noscri pt. net/, 2008.

S. D. Paola and G. Fedon. Subverting ajaxClaC Confer-
ence 2006.

T. Pietraszek and C. V. Berghe. Defending against injection
attacks through context-sensitive string evaluatiorRAiD,
2004.

F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and Y. Wu.
Lift: A low-overhead practical information flow tracking
system for detecting security attacks.Rroceedings of the
39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture 2006.

[32] Samy. I'm popular. Description of the MySpace worm by [41] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection

the author, including a technical explanation., Oct 2005. and communication abstractions for web browsers in mashu-
[33] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-grained pos. INSOSR 2007.
binary instrumentationwith applications to taint-tracking. In [42] Web Application Security ~Consortium. Web
Proceedings of the sixth annual IEEE/ACM international application security statistics project 2007.
symposium on Code generation and optimizatRH08. http://ww. webappsec. or g/ proj ect s/
[34] A. Sotirov. Blackbox reversing of XSS filtersRECON statistics/wasc_wass_2007. pdf.
2008. [43] XSSed.com. Famous XSS exploitshtt p: // xssed.
[35] Z. Su and G. Wassermann. The essence of command injec- com ar chi ve/ speci al =1, 2008.
tion attacks in web applications. 2006. [44] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy en-
[36] Symantec Corp. Symantec internet security threat report. forcement: A practical approach to defeat a wide range of
Technical report, Symantec Corp., April 2008. attacks.USENIX Security Symposiu2006.
[37] Unicode, Inc. Unicode character databaséttp://
gg(l)g.ode. or g/ Publ i c/ UNI DATA/ Pr oplLi st . t xt, A Unicode Whitespace Points
[38] W. Venema. Taint support for PHP.
ftp://ftp.porcupine.org/pub/php/php-5.2.3-taint- Table 1 contains the Unicode points used to implement
20071103.README.html, 2007. the delimiters as discussed in Section 6.
[39] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Cross-Site Scripting Prevention with Dy- U+0009 U+000A U+000B U+000C U+000D
namic Data Tainting and Static Analysis. Rroceeding U+0020 U+00A0 U+2000 U+2001 U+2002
of the Network and Distributed System Security Symposium U+2003 U+2004 U+2005 U+2006 U+2007
(NDSS) San Diego, CA, February 2007. U+2008 U+2009 U+200A U+2028 U+2029

[40] W3C. HTML 5 specification. ht t p: / / www. w3. or g/
TR htm 5/. Table 1: Unicode Whitespace Points

