
Secure Content Sniffing for Web Browsers, or
How to Stop Papers from Reviewing Themselves

Adam Barth
UC Berkeley

Juan Caballero
UC Berkeley and CMU

Dawn Song
UC Berkeley

Abstract

Cross-site scripting defenses often focus on HTML doc-
uments, neglecting attacks involving the browser’s content-
sniffing algorithm, which can treat non-HTML content as
HTML. Web applications, such as the one that manages this
conference, must defend themselves against these attacks or
risk authors uploading malicious papers that automatically
submit stellar self-reviews. In this paper, we formulate
content-sniffing XSS attacks and defenses. We study content-
sniffing XSS attacks systematically by constructing high-
fidelity models of the content-sniffing algorithms used by
four major browsers. We compare these models with Web
site content filtering policies to construct attacks. To de-
fend against these attacks, we propose and implement a
principled content-sniffing algorithm that provides security
while maintaining compatibility. Our principles have been
adopted, in part, by Internet Explorer 8 and, in full, by
Google Chrome and the HTML 5 working group.

1. Introduction

For compatibility, every Web browser employs a content-
sniffing algorithm that inspects the contents of HTTP re-
sponses and occasionally overrides the MIME type provided
by the server. For example, these algorithms let browsers
render the approximately 1% of HTTP responses that lack a
Content-Type header. In a competitive browser market,
a browser that guesses the “correct” MIME type is more
appealing to users than a browser that fails to render these
sites. Once one browser vendor implements content sniffing,
the other browser vendors are forced to follow suit or risk
losing market share [1].

If not carefully designed for security, a content-sniffing
algorithm can be leveraged by an attacker to launch cross-
site scripting (XSS) attacks. In this paper, we study these
content-sniffing XSS attacks. Aided by a technique we call
string-enhanced white-box exploration, we extract models of
the content-sniffing algorithms used by four major browsers
and use these models to find content-sniffing XSS attacks
that affect Wikipedia, a popular user-edited encyclopedia,
and HotCRP, the conference management Web application
used by the 2009 IEEE Privacy & Security Symposium. We

%!PS-Adobe-2.0
%%Creator: <script> ... </script>
%%Title: attack.dvi

Figure 1. A chameleon PostScript document that Inter-
net Explorer 7 treats as HTML.

then propose fixing the root cause of these vulnerabilities:
the browser content-sniffing algorithm. We design an algo-
rithm based on two principles and evaluate the compatibility
of our algorithm on over a billion HTTP responses.

Attacks. We illustrate content-sniffing XSS attacks by de-
scribing an attack against the HotCRP conference manage-
ment system. Suppose a malicious author uploads a paper
to HotCRP in PostScript format. By carefully crafting the
paper, the author can create a chameleon document that
both is valid PostScript and contains HTML (see Figure 1).
HotCRP accepts the chameleon document as PostScript, but
when a reviewer attempts to read the paper using Internet
Explorer 7, the browser’s content-sniffing algorithm treats
the chameleon as HTML, letting the attacker run a malicious
script in HotCRP’s security origin. The attacker’s script can
perform actions on behalf of the reviewer, such as giving
the paper a glowing review and a high score.

Although content-sniffing XSS attacks have been known
for some time [2]–[4], the underlying vulnerabilities, dis-
crepancies between browser and Web site algorithms for
classifying the MIME type of content, are poorly under-
stood. To illuminate these algorithms, we build detailed
models of the content-sniffing algorithms used by four
popular browsers: Internet Explorer 7, Firefox 3, Safari 3.1,
and Google Chrome. For Firefox 3 and Google Chrome, we
extract the model using manual analysis of the source code.
For Internet Explorer 7 and Safari 3.1, which use proprietary
content-sniffing algorithms, we extract the model of the
algorithm using string-enhanced white-box exploration on
their binaries. This white-box exploration technique reasons
directly about strings and generates models for closed-source
algorithms that are more accurate than those generated using
black-box approaches. Using our models, we find such a
discrepancy in Wikipedia, leading to a content-sniffing XSS
attack (see Figure 2) that eluded Wikipedia’s developers.

Figure 2. To mount a content-sniffing XSS attack, the attacker uploads a GIF/HTML chameleon to Wikipedia. The
browser treats the chameleon as HTML and runs the attacker’s JavaScript.

Defenses. Although Web sites can use our models to con-
struct a correct upload filter today, we propose fixing the
root cause of content-sniffing XSS attacks by changing
the browser’s content-sniffing algorithm. To evaluate the
security properties of our algorithm, we introduce a threat
model for content-sniffing XSS attacks, and we suggest two
design principles for a secure content-sniffing algorithm:
avoid privilege escalation, which protects sites that limit
the MIME types they use when serving malicious content,
and use prefix-disjoint signatures, which protects sites that
filter uploads. We evaluate the deployability of our algorithm
using Google’s search index and opt-in user metrics from
Google Chrome users. Using metrics from users who have
opted in, we improve our algorithm’s security by removing
over half of the algorithm’s MIME signatures while retaining
99.996% compatibility with the previous version of the
algorithm.

Google has deployed our secure content-sniffing algo-
rithm to all users of Google Chrome. The HTML 5 working
group has adopted our secure content-sniffing principles
in the draft HTML 5 specification [5]. Microsoft has also
partially adopted one of our principles in Internet Explorer 8.
We look forward to continuing to work with browser vendors
to improve the security of their content-sniffing algorithms
and to eliminate content-sniffing XSS attacks.

Contributions. We make the following contributions:
• We build high-fidelity models of the content-sniffing

algorithms of Internet Explorer 7, Firefox 3, Safari 3.1,
and Google Chrome. To extract models from the closed-
source browsers, we use string-enhanced white-box
exploration on the binaries.

• We use these models to craft attacks against Web sites
and to construct a comprehensive upload filter these
sites can use to defend themselves.

• We propose two design principles for secure content-
sniffing algorithms and evaluate the security and com-
patibility of these principles using real-world data.

• We implement and deploy a content-sniffing algorithm
based on our principles in Google Chrome and report
adoption of our principles by standard bodies and other
browser vendors.

Organization. Section 2 describes our analysis techniques,
the content-sniffing algorithms used by four major browsers,
and the concrete attacks we discover. Section 3 presents
our threat model, a server-based filtering defense, our two
principles for secure content sniffing, a security analysis of
our principles, and a compatibility analysis of our implemen-
tation. Section 4 discusses related work. Section 5 concludes.

2. Attacks

In this section, we study content-sniffing XSS attacks.
First, we provide some background information. Then, we
introduce content-sniffing XSS attacks. Next, we describe a
technique for constructing models from binaries and apply
that technique to extract models of the content-sniffing
algorithm from four major browsers. Finally, we construct
attacks against two popular Web sites by comparing their
upload filters with our models.

2.1. Background

In this section, we provide background information about
how servers identify the type of content included in an HTTP
response. We do this in the context of a Web site that allows
its users to upload content that can later be downloaded by
other users, such as in a photograph sharing or a conference
management site.

Content-Type. HTTP identifies the type of content in up-
loads or downloads using the Content-Type header. This
header contains a MIME type1 such as text/plain or
application/postscript. When a user uploads a file
using HTTP, the server typically stores both the file itself
and a MIME type. Later, when another user requests the
file, the Web server sends the stored MIME type in the
Content-Type header. The browser uses this MIME type
to determine how to present the file to the user or to select
an appropriate plug-in.

1. Multipurpose Internet Mail Extensions (MIME) is an Internet stan-
dard [6]–[8] originally developed to let email include non-text attachments,
text using non-ASCII encodings, and multiple pieces of content in the same
message. MIME defines MIME types, which are used by a number of
protocols, including HTTP.

Some Web servers (including old versions of Apache [9])
send the wrong MIME type in the Content-Type header.
For example, a server might send a GIF image with
a Content-Type of text/html or text/plain.
Some HTTP responses lack a Content-Type header
entirely or contain an invalid MIME type, such as */*
or unknown/unknown. To render these Web sites cor-
rectly, browsers use content-sniffing algorithms that guess
the “correct” MIME type by inspecting the contents of
HTTP responses.

Upload filters. When a user uploads a file to a Web site,
the site has three options for assigning a MIME type to
the content: (1) the Web site can use the MIME type
received in the Content-Type header; (2) the Web site
can infer the MIME type from the file’s extension; (3) the
Web site can examine the contents of the file. In practice,
the MIME type in the Content-Type header or inferred
from the extension is often incorrect. Moreover, if the user
is malicious, neither option (1) nor option (2) is reliable. For
these reasons, many sites choose option (3).

2.2. Content-Sniffing XSS Attacks

When a Web site’s upload filter differs from a browser’s
content-sniffing algorithm, an attacker can often mount a
content-sniffing XSS attack. In a content-sniffing XSS attack,
the attacker uploads a seemingly benign file to an honest
Web site. Many Web sites accept user uploads. For example,
photograph sharing sites accept user-uploaded images and
conference management sites accepts user-uploaded research
papers. After the attacker uploads a malicious file, the
attacker directs the user to view the file. Instead of treating
the file as an image or a research paper, the user’s browser
treats the file as HTML because the browser’s content-
sniffing algorithm overrides the server’s MIME type. The
browser then renders the attacker’s HTML in the honest
site’s security origin, letting the attacker steal the user’s
password or transact on behalf of the user.

To mount a content-sniffing XSS attack, the attacker must
craft a file that will be accepted by the honest site and
be treated as HTML by the user’s browser. Crafting such
a file requires exploiting a mismatch between the site’s
upload filters and the browser’s content-sniffing algorithm.
A chameleon document is a file that both conforms to a
benign file format (such as PostScript) and contains HTML.
Most file formats admit chameleon documents because they
contain fields for comments or metadata (such as EXIF [10]).
Site upload filters typically classify documents into different
MIME types and then check whether that MIME type
belongs to the site’s list of allowed MIME types. These
sites typically accept chameleon documents because they
are formated correctly. The browser, however, often treats
a well-crafted chameleon as HTML.

The existence of chameleon documents has been known
for some time [2]. Recently, security researchers have sug-
gested using PNG and PDF chameleon documents to launch
XSS attacks [3], [4], [11], [12], but these researchers have
not determined which MIME types are vulnerable to attack,
which browsers are affected, or whether existing defenses
actually protect sites.

2.3. Model Extraction

We investigate content-sniffing XSS attacks by extracting
high-fidelity models of content-sniffing algorithms from
browsers and Web sites. When source code is available,
we manually analyze the source code to build the model.
Specifically, we manually extract models of the content-
sniffing algorithms from the source code of two browsers,
Firefox 3 and Google Chrome, and the upload filter of two
Web sites, Wikipedia [13] and HotCRP [14].

Extracting models from Internet Explorer 7 and Sa-
fari 3.12 is more difficult because their source code is
not available publicly. We could use black-box testing to
construct models by observing the outputs generated from
selected inputs, but models extracted by black-box testing
are often insufficiently accurate for our purpose. For exam-
ple, the Wine project [15] used black-box testing and docu-
mentation [16] to re-implement Internet Explorer’s content-
sniffing algorithm, but Wine’s content-sniffing algorithm
differs significantly from Internet Explorer’s content-sniffing
algorithm. For example, the Wine signature for HTML
contains just the <html tag instead of the 10 tags we find in
Internet Explorer’s content-sniffing algorithm by white-box
exploration.

To extract accurate models from the closed-source
browsers, we employ string-enhanced white-box explo-
ration. Our technique is similar in spirit to previous white-
box exploration techniques used for automatic testing [17]–
[19]. Unlike previous work, our technique builds a model
from all the explored paths incrementally. Our technique
also reasons directly about string operations rather than the
individual byte-level operations that comprise those string
operations, and we apply our technique to building models
rather than generating test cases.

By reasoning directly about string operations, we can
explore paths more efficiently, increasing the coverage
achieved by the exploration per unit of time and improving
the fidelity of our models. We expect directly reasoning
about string operations will similarly improve the perfor-
mance of other white-box exploration applications.

Preparation. A prerequisite for the exploration is to extract
the prototype of the function that implements content sniff-
ing and to identify the string functions used by that function.

2. Although a large portion of Safari is open-source as part of the
WebKit project, Safari’s content-sniffing algorithm is implemented in the
CFNetwork.dll library, which is not part of the WebKit project.

For Internet Explorer 7, the online documentation at the
Microsoft Developer Network (MSDN) states that con-
tent sniffing is implemented by the FindMimeFromData
function [16]. MSDN also provides the prototype of
FindMimeFromData, including the parameters and return
values [20]. Using commercial off-the-self tools [21] as well
as our own binary analysis tools [22], [23], we identified
the string operations used by FindMimeFromData and
the function that implements Safari 3.1’s content-sniffing
algorithm after some dynamic analysis and a few hours of
manual reverse engineering.

Exploration. We build a model of the content-sniffing
algorithm incrementally by iteratively generating inputs that
traverse new execution paths in the program. In each iter-
ation, we send an input to the program, which runs in a
symbolic execution module that executes the program on
both symbolic and concrete inputs. The symbolic execution
module produces a path predicate, a conjunction of Boolean
constraints on the input that captures how the execution
path processes the input. From this path predicate, an input
generator produces a new input by negating one of the
constraints in the path predicate and solving the modified
predicate. The input generator repeats this process for each
constraint in the path predicate, generating many potential
inputs for the next iteration. A path selector assigns priorities
to these potential inputs and selects the input for the next
iteration. We start the iterative exploration process with an
initial input, called the seed, and continue exploring paths
until there are no more paths to explore or until a user-
specified maximum running time is exhausted. Once the
exploration finishes, we output the disjunction of the path
predicates as a model of the explored function.

String enhancements. String-enhanced white-box explo-
ration improves white-box exploration by including string
constraints in the path predicate. The input generator trans-
lates those string constraints into constraints understood by
the constraint solver. We process strings in three steps:

1) Instead of generating constraints from the byte-level
operations performed by string functions, the symbolic
execution module generates constraints based on the
output of these string functions using abstract string
operators.

2) The input generator translates the abstract string opera-
tions into a language of arrays and integers understood
by an off-the-shelf solver [24] by representing strings
as a length variable and an array of some maximum
length.

3) The input generator uses the output of the solver
to build an input that starts a new iteration of the
exploration.

These steps, as well as the abstract string operators, are
detailed in [23].

By using string operators, we abstract the underlying
string representation, letting us use the same framework for
multiple languages. For example, we can apply our frame-
work to the content-sniffing algorithm of Internet Explorer 7,
which uses C strings (where strings are often represented as
null-terminated character arrays), as well as to the content-
sniffing algorithm of Safari 3.1, which uses a C++ string
library (where strings are represented as objects containing
a character array and an explicit length).

Even though no string constraint solver was publicly
available during the course of this work, we designed our
abstract string syntax so that it could use such a solver
whenever available. Simultaneous work reports on solvers
that support a theory of strings [25]–[27]. Thus, rather than
translating the abstract string operations into a theory of
arrays and integers, we could easily generate constraints in
a theory of strings instead, benefiting from the performance
improvements provided by these specialized solvers.

2.4. Content-Sniffing Algorithms

We analyze the content-sniffing algorithms used by four
browsers: Internet Explorer 7, Firefox 3, Safari 3.1, and
Google Chrome. We discover that the algorithms follow
roughly the same design but that subtle differences between
the algorithms have dramatic consequences for security. We
compare the algorithms on several key points: the number
of bytes used by the algorithm, the conditions that trigger
sniffing, the signatures themselves, and restrictions on the
HTML signature. We also discuss the “fast path” we observe
in one browser.

Buffer size. We find that each browser limits content sniffing
to the initial bytes of each HTTP response but that the
number of bytes they consider varies by browser. Internet
Explorer 7 uses 256 bytes. Firefox 3 and Safari 3.1 use
1024 bytes. Google Chrome uses 512 bytes, which matches
the draft HTML 5 specification [5]. To be conservative, a
server should filter uploaded content based on the maximum
buffer size used by browsers: 1024 bytes.

Trigger conditions. We find that some HTTP responses
trigger content sniffing but that others do not. Browsers
determine whether to sniff based on the Content-Type
header, but the specific values that trigger content sniffing
vary widely. All four browsers sniff when the response
lacks a Content-Type header. Beyond this behaviour,
there is little commonality. Internet Explorer 7 sniffs if the
header contains one of 35 “known” values listed in Table 4
in the Appendix (of which only 26 are documented in
MSDN [16]). Firefox sniffs if the header contains a “bogus”
value such as */* or an invalid value that lacks a slash.
Google Chrome triggers its content-sniffing algorithm with
these bogus values as well as application/unknown
and unknown/unknown.

image/jpeg Signature
IE 7 DATA[0:1] == 0xffd8
Firefox 3 DATA[0:2] == 0xffd8ff
Safari 3.1 DATA[0:3] == 0xffd8ffe0
Chrome DATA[0:2] == 0xffd8ff
image/gif Signature
IE 7 (strncasecmp(DATA,“GIF87”,5) == 0) ||

(strncasecmp(DATA,“GIF89”,5) == 0)
Firefox 3 strncmp(DATA,“GIF8”,4) == 0
Safari 3.1 N/A
Chrome (strncmp(DATA,“GIF87a”,6) == 0) ||

(strncmp(DATA,“GIF89a”,6) == 0)
image/png Signature
IE 7 (DATA[0:3] == 0x89504e47) &&

(DATA[4:7] == 0x0d0a1a0a)
Firefox 3 DATA[0:3] == 0x89504e47
Safari 3.1 N/A
Chrome (DATA[0:3] == 0x89504e47) &&

(DATA[4:7] == 0x0d0a1a0a)
image/bmp Signature
IE 7 (DATA[0:1] == 0x424d) &&

(DATA[6:9] == 0x00000000)
Firefox 3 DATA[0:1] == 0x424d
Safari 3.1 N/A
Chrome DATA[0:1] == 0x424d

Table 1. Signatures for four popular image formats.
DATA is the sniffing buffer. The nomenclature is

detailed in the Appendix.

Signatures. We find that each browser employs different
signatures. Table 1 shows the different signatures for four
popular image types. Understanding the exact signatures
used by browsers, especially the HTML signature, is crucial
in constructing content-sniffing XSS attacks. The HTML
signatures used by browsers differ not only in the set of
HTML tags, but also in how the algorithm searches for
those tags. Internet Explorer 7 and Safari 3.1 use permissive
HTML signatures that search the full sniffing buffer (256
bytes and 1024 bytes, respectively) for predefined HTML
tags. Firefox 3 and Google Chrome, however, use strict
HTML signatures that require the first non-whitespace char-
acter to begin one of the predefined tags. The permissive
HTML signatures in Internet Explorer 7 and Safari 3.1
let attackers construct chameleon documents because a file
that begins GIF89a<html> matches both the GIF and the
HTML signature. Table 2 presents the union of the HTML
signatures used by the four browsers. These browsers will
not treat a file as HTML if it does not match this signature.

Restrictions. We find that some browsers restrict when
certain MIME types can be sniffed. For example, Google
Chrome restricts which Content-Type headers can
be sniffed as HTML to avoid privilege escalation (see
Section 3). Table 5 in the Appendix shows which
Content-Type header values each browser is willing to
sniff as HTML.

text/html Signature
(strncmp(PTR,"<!",2) == 0) ||
(strncmp(PTR,"<?",2) == 0) ||
(strcasestr(DATA,"<HTML") != 0) ||
(strcasestr(DATA,"<SCRIPT") != 0) ||
(strcasestr(DATA,"<TITLE") != 0) ||
(strcasestr(DATA,"<BODY") != 0) ||
(strcasestr(DATA,"<HEAD") != 0) ||
(strcasestr(DATA,"<PLAINTEXT") != 0) ||
(strcasestr(DATA,"<TABLE") != 0) ||
(strcasestr(DATA,"<IMG") != 0) ||
(strcasestr(DATA,"<PRE") != 0) ||
(strcasestr(DATA,"text/html") != 0) ||
(strcasestr(DATA,"<A") != 0) ||
(strncasecmp(PTR,"<FRAMESET",9) == 0) ||
(strncasecmp(PTR,"<IFRAME",7) == 0) ||
(strncasecmp(PTR,"<LINK",5) == 0) ||
(strncasecmp(PTR,"<BASE",5) == 0) ||
(strncasecmp(PTR,"<STYLE",6) == 0) ||
(strncasecmp(PTR,"<DIV",4) == 0) ||
(strncasecmp(PTR,"<P",2) == 0) ||
(strncasecmp(PTR,"<FONT",5) == 0) ||
(strncasecmp(PTR,"<APPLET",7) == 0) ||
(strncasecmp(PTR,"<META",5) == 0) ||
(strncasecmp(PTR,"<CENTER",7) == 0) ||
(strncasecmp(PTR,"<FORM",5) == 0) ||
(strncasecmp(PTR,"<ISINDEX",8) == 0) ||
(strncasecmp(PTR,"<H1",3) == 0) ||
(strncasecmp(PTR,"<H2",3) == 0) ||
(strncasecmp(PTR,"<H3",3) == 0) ||
(strncasecmp(PTR,"<H4",3) == 0) ||
(strncasecmp(PTR,"<H5",3) == 0) ||
(strncasecmp(PTR,"<H6",3) == 0) ||
(strncasecmp(PTR,"<B",2) == 0) ||
(strncasecmp(PTR,"<BR",3) == 0)

Table 2. Union of HTML signatures. PTR is a pointer to
the first non-whitespace byte of DATA.

Fast path. We find that, unlike other browsers, Internet
Explorer 7 varies the order in which it applies its
signatures according to the Content-Type header. If
the header is text/html, image/gif, image/jpeg,
image/pjpeg, image/png, image/x-png, or
application/pdf and the content matches the
signature for the indicated MIME type, then the algorithm
skips the remaining signatures. Otherwise, the algorithm
checks the signatures in the usual order.

Over time, Microsoft has added MIME types to this
fast path. For example, in April 2008, Microsoft added
application/pdf to the fast path to improve compati-
bility [28]. Microsoft classified this change as non-security
related [29], but adding MIME types to the fast path makes
construction of chameleon documents more difficult. If the
chameleon matches a fast-path signature, the browser will
not treat the chameleon as HTML. However, if the site’s
upload filter is more permissive than the browser’s signature,
the attacker can craft an exploit as we show in Section 2.5.

2.5. Concrete Attacks

In this section, we present two content-sniffing XSS
attacks that we find by comparing our models of browser
content-sniffing algorithms with the upload filters of two
popular Web applications: HotCRP and Wikipedia. We im-
plement and confirm the attacks using local installations of
these sites.

HotCRP. HotCRP is the conference management Web
application used by the 2009 IEEE Security & Privacy
Symposium. HotCRP lets authors upload their papers in PDF
or PostScript format.3 Before accepting an upload, HotCRP
checks whether the file appears to be in the specified format.
For PDFs, HotCRP checks that the first bytes of the file
are %PDF- (case insensitive), and for PostScript, HotCRP
checks that the first bytes of the file are %!PS- (case
insensitive).

HotCRP is vulnerable to a content-sniffing XSS attack
because HotCRP will accept the chameleon document in
Figure 1 as PostScript but Internet Explorer 7 will treat
the same document as HTML. To mount the attack, the
attacker submits a chameleon paper to the conference. When
a reviewer attempts to view the paper, the browser treats
the paper as HTML and runs the attacker’s JavaScript as if
the JavaScript were part of HotCRP, which lets the attacker
give the paper a high score and recommend the paper for
acceptance.

Wikipedia. Wikipedia is a popular Web site that lets users
upload content in several formats, including SVG, PNG,
GIF, JPEG, and Ogg/Theora [30]. The Wikipedia developers
are aware of content-sniffing XSS attacks and have taken
measures to protect their site. Before storing an uploaded
file in its database, Wikipedia performs three checks:

1) Wikipedia checks whether the file matches one of the
whitelisted MIME types. For example, Wikipedia’s
GIF signature checks if the file begins with GIF.
Wikipedia uses PHP’s MIME detection functions,
which in turn use the signature database from the Unix
file tool [31].

2) Wikipedia checks the first 1024 bytes for a set of
blacklisted HTML tags, aiming to prevent browsers
from treating the file as HTML.

3) Wikipedia uses several regular expressions to check
that the file does not contain JavaScript.

Even though Wikipedia filters uploaded content, our analysis
uncovers a subtle content-sniffing XSS attack. We construct
the attack in three steps, each of which defeats one of the
steps in Wikipedia’s upload filter:

1) By beginning the file with GIF88, the attacker satis-
fies Wikipedia’s requirement that the file begin with
GIF without matching Internet Explorer 7’s GIF

3. A conference organizer can disable either paper format.

signature, which requires that file begin with either
GIF87 or GIF89.

2) Wikipedia’s blacklist of HTML tags is incomplete
and contains only 8 of the 33 tags needed. To cir-
cumvent the blacklist, the attacker includes the string
<a href, which is not on Wikipedia’s blacklist but
causes the file to match Internet Explorer 7’s HTML
signature.

3) To evade Wikipedia’s regular expressions, the attacker
can include JavaScript as follows:
<object src="about:blank"
onerror="... JavaScript ...">

</object>

Although the fast path usually protects GIF images in
Internet Explorer 7, a file constructed in this way passes
Wikipedia’s upload filter but is treated as HTML by Internet
Explorer 7. To complete the cross-site scripting attack, the
attacker uploads this file to Wikipedia and directs the user
to view the file.

Wikipedia’s PNG signature can be exploited using a sim-
ilar attack because the signature contains only the first four
of the eight bytes in Internet Explorer 7’s PNG signature.
Variants on this attack also affect other Web sites that
use PHP’s built-in MIME detection functions and the Unix
file tool. These attacks demonstrate the importance of
extracting precise models because the attacks hinge on subtle
differences between the upload filter used by Wikipedia and
the content-sniffing algorithm used by the browser.

The production instance of Wikipedia mitigates content-
sniffing XSS attacks by hosting uploaded content on a
separate domain. This approach does limit the severity of
this vulnerability, but the installable version of Wikipedia,
mediawiki, which is used by over 750 Web sites in the
English language alone [32], hosts uploaded user content on-
domain in the default configuration and is fully vulnerable
to content-sniffing XSS attacks. After we reported this vul-
nerability to Wikipedia, Wikipedia has improved its upload
filter to prevent these attacks.

3. Defenses

In this section, we describe two defenses against content-
sniffing XSS attacks. First, we use our models to construct a
secure upload filter that protects sites against content-sniffing
XSS attacks. Second, we propose addressing the root cause
of content-sniffing XSS attacks by securing the browser’s
content-sniffing algorithm.

Secure filtering. Based on the models we extract from the
browsers, we implement an upload filter in 75 lines of Perl
that protects Web sites from content-sniffing XSS attacks.
Our filter uses the union HTML signature in Table 2. If
a file passes the filter, the content is guaranteed not to be
interpreted as HTML by Internet Explorer 7, Firefox 3,

Safari 3.1, and Google Chrome. Using our filter, Web sites
can block potentially malicious user-uploaded content that
those browsers might treat as HTML.

Securing Sniffing. The secure filtering defense requires each
Web site and proxy to adopt our filter. In parallel with this
effort, browser vendors can mitigate content-sniffing XSS
attacks against legacy Web sites by improving their content-
sniffing algorithms. In the remainder of this section, we
formulate a threat model for content-sniffing XSS attacks
and propose two principles for designing a secure content-
sniffing algorithm. We analyze the security and compatibility
properties of an algorithm based on these principles.

3.1. Threat Model

We define a precise threat model for reasoning about
content-sniffing XSS attacks. There are three principals in
our threat model: the attacker, the user and the honest
Web site. In a typical attack, the attacker uploads malicious
content to the honest Web site and then directs the user’s
browser to render that content. We base our threat model on
the standard Web attacker threat model [33]. Even though the
Web attacker has more abilities than are strictly necessary
to carry out a content-sniffing XSS attack, we use this threat
model to ensure our defenses are robust.

• Attacker abilities. The attacker owns and operates
a Web site with an untrusted domain name, canon-
ically https://attacker.com/. These abilities can all be
purchased on the open market for a nominal cost.

• User behavior. The user visits https://attacker.com/, but
does not treat attacker.com as if it were a trusted site.
For example, the user does not enter any passwords
at attacker.com. When the user visits attacker.com, the
attacker is “introduced” to the user’s browser, letting
the attacker redirect the user to arbitrary URLs. This
assumption captures a central principle of Web security:
browsers ought to protect users from malicious sites.

• Honest Web site behavior. The honest Web site lets
the attacker upload content and then makes that content
available at some URL. For example, a social network-
ing site might let its users (who are potential attackers)
upload images or videos. We assume that the honest
site restricts what content the attacker can upload.

The most challenging part of constructing a useful threat
model is characterizing how honest Web sites restrict up-
loads. For example, some honest sites (e.g., file storage
services) might let users upload arbitrary content, whereas
other sites might restrict the type of uploaded content (e.g.,
photograph sharing services) and perform different amounts
of validation before serving the content to other users. Based
on our case studies, we believe that many sites either restrict
the Content-Types they serve or filter content when
uploaded (or both):

• Restrict Content-Type. Some Web sites restrict the
Content-Type header they use when serving con-
tent uploaded by users. For example, a social net-
working Web site might enforce that its servers
attach a Content-Type header beginning with
image/ to photographs, or a conference manage-
ment Web application might serve papers only with a
Content-Type header of application/pdf or
application/postscript.

• Filter uploads. When users upload content, some sites
use a function like PHP’s finfo_file to check
the initial bytes of the file to verify that the content
conforms to the appropriate MIME type. For example, a
photo sharing site might verify that uploaded files actu-
ally appear to be images and a conference management
Web site might check that uploaded documents actually
appear to be in PDF or PostScript format. Although
not all MIME types can be recognized by their initial
bytes, we assume sites only accept types commonly
used on the Web. For these types, the initial bytes are
dispositive.

We also assume that the honest site uses standard XSS
defenses [34] to sanitize untrusted portions of HTML docu-
ments. However, we assume the honest site does not apply
these sanitizers to non-HTML content because using an
HTML sanitizer, such as PHP’s htmlentities, on an
image makes little sense because converting < characters to
< would cause the image to render incorrectly.

Attacker goal. The attacker’s goal is to mount an XSS attack
against the honest site. More precisely, the attacker’s goal is
to run a malicious script in the honest site’s security origin
in the user’s browser. In particular, we focus on attacks that
leverage content sniffing to evade standard XSS defenses.

3.2. Design Principles

Content-sniffing algorithms trade off security and compat-
ibility. To guide our design of a more secure content-sniffing
algorithm, we propose two principles that help the algorithm
maximize compatibility and achieve security.

• Avoid privilege escalation. Browsers assign different
privileges to different MIME types. A content-sniffing
algorithm avoids privilege escalation if the algorithm
refuses to upgrade one MIME type to another of
higher privilege. For example, the algorithm should
not upgrade a response with a valid Content-Type
header to text/html because HTML has the highest
privilege (i.e., HTML can run arbitrary script).

• Use prefix-disjoint signatures. A content-sniffing al-
gorithm uses prefix-disjoint signatures if its HTML
signature does not share a prefix with a signature
for another type commonly used on the Web. More
precisely, a set of signatures is prefix-disjoint if there

does not exist two distinct sequences of bytes with
a common prefix such that one matches the HTML
signature and the other matches a signature for a non-
HTML type commonly used on the Web. Firefox 3 and
Google Chrome adhere to this principle, but Internet
Explorer 7 and Safari 3.1 do not.

3.3. Security Analysis

Avoiding privilege escalation protects Web sites that re-
strict the values of the Content-Type header they attach
to untrusted content because the browser will not upgrade
attacker-supplied content to HTML (or another dangerous
type) and will not run the attacker’s malicious JavaScript.
Unfortunately, avoiding privilege escalation is insufficient
to protect all sites that filter uploads. For example, if a
site serves content without a Content-Type header (e.g.,
if the site stores uploaded files in the file system and the
Web server does not recognize the file extension), then the
browser might sniff the uploaded content as HTML, opening
the site up to attack.

Prefix-disjoint signatures, however, protect Web sites that
filter uploaded content even if those sites use signatures
that differ from the ones used by the browsers. If the site’s
signature is more strict than the browser’s signature, then
files accepted by the server will be sniffed correctly by
the browser. If the site’s signature is less strict (i.e., uses
fewer initial bytes), then the site will be protected from
content-sniffing XSS attacks in a browser that uses prefix-
disjoint signatures. For example, suppose that the site acts
like Wikipedia and checks only the first 4 of the initial 8
byte sequence required by the PNG standard [35]. If the
browser uses prefix-disjoint signatures, no extension of this
4-byte sequence will match the HTML signature because
this sequence can be extended to match the PNG signature.
Even if the rest of the document consists of HTML tags, a
browser that employs prefix-disjoint signatures will not treat
the file as HTML and will prevent the attacker from crafting
an exploit like the one in Section 2.5.

The HTML signature used by Internet Explorer 7 and Sa-
fari 3.1 is not prefix-disjoint because the signature searches
for known HTML tags ignoring the initial bytes of the
content, which might contain a signature for another type.
For example, the string GIF87a<html> matches both the
GIF signature and the HTML signature. Firefox 3 and
Google Chrome use a strict HTML signature that requires
the first non-whitespace characters to be a known HTML tag.
According to our experiments on the Google search database
(see Section 3.4), tolerating leading white space matches
9% more documents than requiring the initial characters of
the content-sniffing buffer to be a known HTML tag. We
recommend this HTML signature because the signature is
prefix-disjoint from the other signatures.

3.4. Compatibility Evaluation

To evaluate the compatibility of our principles for secure
content sniffing, we implement a content-sniffing algorithm
that follows both of our design principles and collaborate
with Google to ship the algorithm in Google Chrome. We
use the following process to design the algorithm:

1) We evaluate the compatibility of our design principles
over Google’s search database, which contains billions
of Web documents.

2) Google’s quality assurance team manually tests our
implementation for compatibility with the 500 most
popular Web sites.

3) We deploy the algorithm to millions of users and
improve the algorithm using aggregate metrics.

Search database. To avoid privilege escalation, our content-
sniffing algorithm does not sniff HTML from most
Content-Type values. To evaluate whether this behavior
is compatible with the Web, we run a map-reduce query [36]
over Google’s search database. One limitation of this ap-
proach is that each page in the database contributes equally
to the statistics, but users visit some pages (such as the CNN
home page) much more often than other pages. The other
two steps in our evaluation attempt to correct for this bias.
From this data, we make the following observations:

• <!DOCTYPE html is the most frequently occur-
ring initial HTML tag in documents that lack a
Content-Type header. (We assign these documents
a relative frequency of 1.)

• <html is the next most frequently occurring initial
HTML tag in documents missing a Content-Type
header. This occurs with relative frequency 0.612. For
clarity, we limit the remainder of our statistics to this
tag, but the results are similar if we consider all valid
HTML tags.

• <html occurs as the initial bytes of documents with
a Content-Type of text/plain with relative fre-
quency 0.556, which is approximately the same relative
frequency as for documents with a Content-Type of
unknown/unknown.

• <html occurs as the initial bytes of documents with
a bogus Content-Type (i.e., missing a slash) with
relative frequency 0.059.

• When the Content-Type is valid, HTML tags occur
with relative frequency less than 0.001.

From these observations, we conclude that, with the possible
exception of text/plain, a content-sniffing algorithm
can avoid privilege escalation by limiting when it sniffs
HTML and remain compatible with a large percentage of the
Web. From these observations, we do not draw a conclusion
about text/plain because the data indicates that not
sniffing HTML from text/plain is roughly as com-
patible as not sniffing HTML from unknown/unknown,

Signature Mime Type Percentage
DATA[0:2] == 0xffd8ff image/jpeg 58.50%
strncmp(DATA,"GIF89a",6) == 0 image/gif 13.43%
(DATA[0:3] == 0x89504e47) && image/png 5.50%
(DATA[4:7] == 0x0d0a1a0a)
strncasecmp(PTR,"<SCRIPT",7) == 0 text/html 16.11%
strncasecmp(PTR,"<HTML",5) == 0 text/html 1.25%
strncmp(PTR,"<?xml",5) == 0 application/xml 1.10%

Table 3. The most popular signatures according to statistics collected from opt-in Google Chrome users. PTR is a
pointer to the first non-whitespace byte of DATA.

yet none of the other major browsers sniff HTML from
unknown/unknown. In our implementation, we choose
to sniff HTML from unknown/unknown but not from
text/plain because unknown/unknown is not a valid
MIME type.

Top 500 sites. We implement a content-sniffing algorithm
for Google Chrome according to both of our design princi-
ples. To evaluate compatibility, the Google Chrome quality
assurance team manually analyzed the 500 most popular
Web sites both with and without our content-sniffing algo-
rithm. With the algorithm disabled, the team found a number
of incompatibilities with major Web sites including Digg and
United Airlines. With the content-sniffing algorithm enabled,
the team found one incompatibility due to the algorithm
not sniffing application/x-shockwave-flash from
text/plain. However, every major browser is incompat-
ible with this page, suggesting that this incompatibility is
likely be resolved by the Web site operator.

Metrics. To improve the security of our algorithm, we
instrument Google Chrome to collect metrics about the
effectiveness of each signature from users who opt in to
sharing their anonymous statistics. Based on this data, we
find that six signatures (see Table 3) are responsible for 96%
of the time the content sniffing algorithm changes the MIME
type of an HTTP response. Based on this data, we remove
over half of the signatures used by the initial algorithm. This
change has a negligible impact on compatibility because
these signatures trigger less than 0.004% of the time the
content sniffing algorithm is invoked. Removing these signa-
tures reduces the attack surface presented by the algorithm.
Google has deployed our modified algorithm to all users of
Google Chrome.

3.5. Adoption

In addition to being deployed in Google Chrome, our
design principles have been standardized by the HTML 5
working group and adopted in part by Internet Explorer 8.

Standardization. The HTML 5 working group has adopted
both of our content-sniffing principles in the draft HTML 5

specification [5]. The current draft advocates using prefix-
disjoint signatures and classifies MIME types as either
safe or scriptable. Content served with a safe MIME type
carries no origin, but content served with a scriptable
MIME type conveys the (perhaps limited) authority of its
origin. The specification lets browsers sniff safe types from
HTTP responses with valid Content-Types (such as
text/plain) but forbids browsers from sniffing scriptable
types from these responses, avoiding privilege escalation.

Internet Explorer 8. The content-sniffing algorithm in
Internet Explorer 8 differs from the algorithm in Internet
Explorer 7. The new algorithm does not sniff HTML from
HTTP responses with a Content-Type header that begins
with the bytes image/ [11], partially avoiding privilege
escalation. This change significantly reduces the content-
sniffing XSS attack surface, but it does not mitigate attacks
against sites, such as HotCRP, that accept non-image uploads
from untrusted users.

4. Related Work

In this section, we relate the current approaches used by
sites that allow user uploads. These approaches provide an
incomplete defense against content-sniffing XSS attacks. We
also describe historical instances of content-sniffing XSS and
related attacks.

Transform content. Web sites can defend themselves
against content-sniffing XSS attacks by transforming user
uploads. For example, Flickr converts user-uploaded PNG
images to JPEG format. This saves on storage costs and
makes it more difficult to construct chameleon documents
because HTML content inside the PNG is often destroyed
by the transformation. Unfortunately, this approach does not
guarantee security because an attacker might be able to craft
a chameleon that survives the transformation. Also, sites
might have difficulty transforming non-media content, like
text documents.

Host content off-domain. Some sites host user-supplied
content on an untrusted domain. For example, Wikipedia
hosts English-language articles at en.wikipedia.org but hosts

uploaded images at upload.wikimedia.org. Content-sniffing
XSS attacks compromise the http://upload.wikimedia.org
origin but not the http://en.wikipedia.org origin, which con-
tains the user’s session cookie. This approach has a couple
of disadvantages. First, hosting uploads off-domain compli-
cates the installation of redistributable Web applications like
phpBB, Bugzilla, or mediawiki. Also, hosting uploads
off-domain limits interaction with these uploads. For exam-
ple, sites can display off-domain images but cannot convert
them to data URLs or use them in SVG filters. Although
hosting user-uploaded content off-domain is not a complete
defense, the approach provides defense-in-depth and reduces
the site’s attack surface.

Disable content sniffing. Users can disable content sniffing
using advanced browser options, at the cost of compatibility.
Sites can disable content sniffing for an individual HTTP re-
sponse by adding a Content-Disposition header with
the value attachment [37], but this causes the browser to
download the file instead of rendering its contents. Another
approach, used by Gmail, to disable content sniffing is to
pad text/plain attachments with 256 leading whitespace
characters to exhaust Internet Explorer’s sniffing buffer.

Internet Explorer 8 lets sites disable content sniffing for an
individual HTTP response (without triggering the download
handler) by including an X-Content-Type-Options
header with the value nosniff [38]. This feature lets
sites opt out of content sniffing but requires sites to modify
their behavior. We believe this header is complementary to
securing the content-sniffing algorithm itself, which protects
sites that do not upgrade.

Content-sniffing XSS attacks. Previous references to
content-sniffing XSS attacks focus on the construction
of chameleon documents that Internet Explorer sniffs as
HTML. Four years ago, a blog post [2] discusses a
JPEG/HTML chameleon. A 2006 full disclosure post [4]
describes a content-sniffing XSS attack that exploits an
incorrect Content-Type header. More recently, PNG and
PDF chameleons have been used to launch content-sniffing
XSS attacks [3], [12], [39], [40]. Spammers have reportedly
used similar attacks to upload text files containing HTML to
open wikis [3]. Many of the example exploits in these ref-
erences no longer work, suggesting that Internet Explorer’s
content-sniffing algorithm has evolved over time by adding
MIME types to the fast path.

JAR URI Scheme. Although not a content-sniffing vulnera-
bility as such, Firefox 2.0.0.9 contains a vulnerability caused
by treating one type of content as another. Firefox supports
extracting HTML documents from ZIP archives using the
jar URI scheme. If a site lets an attacker upload a ZIP
archive, the attacker can instruct Firefox to unzip the archive
and render the HTML inside [41]. Worse, because the ZIP
parser is tolerant of malformed archives, an attacker can

create chameleon ZIP archives that appear to be images. To
resolve this issue, Firefox now requires the archives to be
served with specific MIME types.

5. Conclusions

Browser content-sniffing algorithms have long been one of
the least-understood facets of the browser security landscape.
In this paper, we study content-sniffing XSS attacks and
defenses. To understand content-sniffing XSS attacks, we
use string-enhanced white-box exploration and source code
inspection to construct high-fidelity models of the content-
sniffing algorithms used by Internet Explorer 7, Firefox 3,
Safari 3.1, and Google Chrome. We use these models to
construct attacks against two Web applications: HotCRP and
Wikipedia.

We describe two defenses for these attacks. For Web sites,
we provide a filter based on our models that blocks content-
sniffing XSS attacks. To protect sites that do not deploy our
filter, we propose two design principles for securing browser
content-sniffing algorithms: avoid privilege escalation and
use prefix-disjoint signatures. We evaluate the security of
these principles in a threat model based on case studies,
and we evaluate the compatibility of these principles using
Google’s search database and metrics from over a billion of
HTTP responses.

We implement a content-sniffing algorithm based on our
principles and deploy the algorithm to real users in Google
Chrome. Our principles have been incorporated into the
draft HTML 5 specification and partially adopted by Internet
Explorer 8. We look forward to continue working with
browser vendors to converge their content sniffers towards
a secure, standardized algorithm.

Acknowledgements

We would like to thank Stephen McCamant, Rhishikesh
Limaye, Susmit Jha, and Sanjit A. Seshia who collaborated
in the design of the abstract string syntax. We also thank
Darin Adler, Darin Fisher, Ian Hickson, Collin Jackson, Eric
Lawrence, and Boris Zbarsky for many helpful discussions
on content sniffing. Finally, our thanks to Chris Karlof,
Adrian Mettler, and the anonymous reviewers for their
insightful comments on this document.

This material is based upon work partially supported by
the National Science Foundation under Grants No. 0311808,
No. 0448452, No. 0627511, and CCF-0424422, and by
the Air Force Office of Scientific Research under MURI
Grant No. 22178970-4170. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the Air Force Office of Scientific Research, or the
National Science Foundation.

References

[1] “Firefox bug 175848,” https://bugzilla.mozilla.org/show bug.
cgi?id=175848.

[2] “Getting around Internet Explorer MIME type
mangling,” http://weblog.philringnalda.com/2004/04/06/
getting-around-ies-mime-type-mangling.

[3] “Internet Explorer facilitates XSS,” http://www.splitbrain.
org/blog/2007-02/12-internet explorer facilitates cross
site scripting.

[4] “SMF upload XSS vulnerability,” http://seclists.org/
fulldisclosure/2006/Dec/0079.html.

[5] I. Hickson et al., “HTML 5 Working Draft,” http://www.
whatwg.org/specs/web-apps/current-work/.

[6] N. Freed and N. Borenstein, “RFC 2045: Multipurpose In-
ternet Mail Extensions (MIME) part one: Format of Internet
message bodies,” Nov. 1996.

[7] ——, “RFC 2046: Multipurpose Internet Mail Extensions
(MIME) part two: Media types,” Nov. 1996.

[8] K. Moore, “RFC 2047: Multipurpose Internet Mail Exten-
sions (MIME) part three: Message header extensions for non-
ASCII text,” Nov. 1996.

[9] “Apache bug 13986,” https://issues.apache.org/bugzilla/show
bug.cgi?id=13986.

[10] “EXIF.org,” http://www.exif.org/.

[11] “Internet Explorer 8 security part V: Comprehensive
protection,” http://blogs.msdn.com/ie/archive/2008/07/02/
ie8-security-part-v-comprehensive-protection.aspx.

[12] “Internet Explorer XSS exploit
door,” http://tweakers.net/nieuws/47643/
xss-exploit-door-microsoft-betiteld-als-by-design.html.

[13] “Wikipedia,” http://www.wikipedia.org.

[14] “HotCRP conference management software,” http://www.cs.
ucla.edu/∼kohler/hotcrp/.

[15] “WineHQ,” http://www.winehq.org/.

[16] “MSDN: MIME type detection in Internet Explorer,” http:
//msdn.microsoft.com/en-us/library/ms775147.aspx.

[17] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler, “EXE: Automatically generating inputs of
death,” in Proceedings of the ACM Conference on Computer
and Communications Security, Alexandria, Virginia, October
2006.

[18] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
automated random testing,” in Proceedings of the SIGPLAN
Conference on Programming Language Design and Imple-
mentation, Chicago, Illinois, June 2005.

[19] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated
whitebox fuzz testing,” in Proceedings of the Annual Network
and Distributed System Security Symposium, San Diego,
California, February 2008.

[20] “MSDN: FindMimeFromData function,” http:
//msdn.microsoft.com/en-us/library/ms775107(VS.85).aspx.

[21] “The IDA Pro disassembler and debugger,” http://www.
hex-rays.com/idapro/.

[22] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G.
Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Saxena,
“BitBlaze: A new approach to computer security via binary
analysis,” in International Conference on Information Systems
Security, Hyderabad, India, December 2008, Keynote invited
paper.

[23] J. Caballero, S. McCamant, A. Barth, and D. Song, “Ex-
tracting models of security-sensitive operations using string-
enhanced white-box exploration on binaries,” EECS De-
partment, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-36, Mar 2009.

[24] V. Ganesh and D. Dill, “A decision procedure for bit-vectors
and arrays,” in Proceedings of the Computer Aided Verifica-
tion Conference, Berlin, Germany, August 2007.

[25] N. Bjorner, N. Tillmann, and A. Voronkov, “Path feasibility
analysis for string-manipulating programs,” in Proceedings of
the International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, York, United Kingdom,
March 2009.

[26] P. Hooimeijer and W. Weimer, “A decision procedure for
subset constraints over regular languages,” in Proceedings of
the SIGPLAN Conference on Programming Language Design
and Implementation, Dublin, Ireland, June 2009.

[27] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D.
Ernst, “HAMPI: A solver for string constraints,” MIT CSAIL,
Tech. Rep. MIT-CSAIL-TR-2009-004, Feb. 2009.

[28] “Microsoft KB945686,” http://support.microsoft.com/kb/
945686/.

[29] “Microsoft KB944533,” http://support.microsoft.com/kb/
944533.

[30] “Wikipedia image use policy,” http://en.wikipedia.org/wiki/
Image use policy.

[31] “Fine free file command,” http://darwinsys.com/file/.

[32] “Sites using mediawiki/en,” http://www.mediawiki.org/wiki/
Sites using MediaWiki/en.

[33] A. Barth, C. Jackson, and J. C. Mitchell, “Securing frame
communication in browsers,” in Proceedings of the Usenix
Security Symposium, San Jose, California, July 2008.

[34] M. Martin and M. S. Lam, “Automatic generation of XSS and
SQL injection attacks with goal-directed model checking,” in
Proceedings of the USENIX Security Symposium, San Jose,
California, July 2008.

[35] “Portable Network Graphics specification, w3c/iso/iec ver-
sion,” http://www.libpng.org/pub/png/spec/iso/.

[36] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proceedings of the Sixth
Symposium on Operating System Design and Implementation,
December 2004.

[37] R. Troost, S. Dorner, and K. Moore, “RFC 2183: Commu-
nicating presentation information in Internet messages: The
content-disposition header field,” Aug. 1997.

[38] “Internet Explorer 8 security part V: Comprehensive
protection,” http://blogs.msdn.com/ie/archive/2008/09/02/
ie8-security-part-vi-beta-2-update.aspx.

[39] “The hazards of MIME sniffing,” http://adblockplus.org/blog/
the-hazards-of-mime-sniffing.

[40] “The downside of uploads,” http://www.malevolent.com/
weblog/archive/2008/02/26/uploads-mime-sniffing/.

[41] “Mozilla foundation security advisory 2007-37,” http://www.
mozilla.org/security/announce/2007/mfsa2007-37.html.

Appendix

Nomenclature. We adopt the following nomenclature to
represent signatures precisely. DATA is a pointer to a buffer
containing the first n bytes of the content, where n is the size
of the content-sniffing buffer size for the particular browser.
DATA[x:y], where n > y ≥ x ≥ 0, is the subsequence
of DATA beginning at offset x and ending at offset y (both
offsets inclusive). For example, Internet Explorer 7 uses the
following signature for image/jpeg: DATA[0:1] ==
0xffd8. To match this signature, an HTTP response must
contain at least two bytes, the first byte of the response
must be 0xff, and the second byte must be 0xd8. We
also use four functions to express signatures: strncmp
for case-sensitive comparison, strncasecmp for case-
insensitive comparison, strstr for case-sensitive search,
and strcasestr for case-insensitive search.

Additional data. Table 4 presents the list of 35 MIME
types that Internet Explorer 7 considers as “known” and thus
trigger the content-sniffing algorithm. In addition to those
text/plain and application/octet-stream also
trigger the content-sniffing algorithm in Internet Explorer 7.

Table 5 presents Content-Type values that the differ-
ent browsers are willing to upgrade to text/html if the
corresponding signature is matched. In the table, Missing
means that the value is absent, Bogus means that the value
lacks a slash, and Known means that the value is in Table 4.

Documented Undocumented
application/base64 (null)

application/java application/x-cdf
application/macbinhex40 application/x-netcdf

application/pdf application/xml
application/postscript image/png

application/x-compressed image/x-art
application/x-gzip-compressed text/scriptlet

application/x-msdownload text/xml
application/x-zip-compressed video/x-msvideo

audio/basic
audio/wav

audio/x-aiff
image/bmp
image/gif

image/jpeg
image/pjpeg

image/tiff
image/x-emf
image/x-jg

image/x-png
image/x-wmf

image/x-xbitmap
text/html

text/richtext
video/avi

video/mpeg

Table 4. Mime types that trigger content sniffing in
Internet Explorer 7. Mime types text/plain and
application/octet-stream also trigger the

content-sniffing algorithm.

Content-Type Chrome IE 7 FF 3 Safari 3.1
Missing yes yes yes yes
Bogus yes no yes no
Known no yes no no
/ yes no yes no
application/ yes no no no
unknown
unknown/ yes no no no
unknown
text/plain no yes no .html

extension
application/ no yes no yes
octet-stream

Table 5. Content-Type values that can be upgraded
to text/html. Missing means the value is absent.

Bogus means the value lacks a slash. Known means
the value is in Table 4.

